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Abstract. 	After briefly reviewing some classical filters for speckle remova!, five filters with 
characteristics of robustness, suitable for speckle noise reduction, are derived and implemented. 
These filters are the ones based on the trimmed maximum likelihood and moments estimators, 
the ones based on the median, on the inter-quartile range and on the median absolute deviation. 
Assuming that observations within a synthetic aperture radar image are outcomes of independent 
Rayleigh random variables, these filters exhibit a good performance from both the signal-to-noise 
reduction and from the edge preserving criteria. The problem of filtering in an image is posed as 
an estimation problem. 

Key Words: estimation, filtering, maximum likelihood, multiplicative models, order statistics, 
robustness, speckle, statistics, synthetic aperture radar. 

1 Introduction 

Image processing techniques have suffered an expio-
sive growth in the last years. This is due to, among 
other reasons, the fact that more and more informa-
tion from different sources, in the form of images, 
is available. It is known that about 50% of the im-
ages sent by environmental satellites has never been 
seen by human eyes... and that most of them carry 
precious information. 

That information, when retrieved within an ac-
ceptable delay after its acquisition, is present in our 
daily life: from relevant information about the wea-
ther, to statistics about continental growth of crops 
that take part in decisions about international finan-
cial aids, including information for ships about drift-
ing icebergs. 

Therefore, it is becoming of crucial importance 
the ability to process images rapidly, and in such a 
manner that the relevant information within these 
images is accurately retrieved. Within this context, 
statistical ideas are becoming very important. Other 
tools, such as the ones derived fron Artificial Intel-
ligence, are also contributing to the development of 
techniques for the processing and the interpretation 
of images. 

Synthetic Aperture Radar (SAR) images are re- 

ceiving an increasing attention, mainly due to the 
several satellites already launched, not to mention 
the airborne missions. This kind of imaging, besides 
providing dielectrical and textural information of the 
targets, is little affected by adverse atmospheric con-
ditions, such as fog, rain, clouds, etc. It also allows 
night imaging, since the sensor is active and carnes 
its own illumination source. 

The main problem with the use of SAR images 
is a kind of signal-dependent noise: speckle noise. It 
makes difficult the visual and the autornatic inter-
pretation of the data, since it produces a salt-and-
pepper effect. 

Some classical algorithms for speckle reduction 
are reviewed: the mean, Frost, cr-Lee, Lee and the 
Kuan/Nathan filters. 

In this work some filters for the reduction of 
speckle noise are derived. They have robust proper-
ties (in a sense to be defined): a desired characteris-
tic for filtering algorithms. These filters are derived 
through the use of a statistical modelling of the data, 
and considering the ocurrence of edges and sharp fea-
tures: the kind of feature that is desirable to retain 
after the filtering. 

Their robustness is achieved through admitting 
that they might be applied to samples of contami- 

SIBGRAPI '93 



A. C. FRERY AND S. J. S. SANT'ANNA 

nated observations. Then, five filters are proposed: 
two based upon the trimming of extreme observa-
tions, and three based upon order statistics. 

These filters are easy to implement and they are 
not adaptive yielding, thus, an affordable computa-
tional effort. 

2 Speckle Noise Filters 

Several techniques for filtering whilst preserving rel-
evant features in images have appeared in the litera-
ture (see [Nagao—Matsuyama (1979)], for example). 

Some specialized filters have been proposed aim-
ing at the reduction of speckle noise and, simulta-
neously, not blurring the image. The reader is re-
ferred to the papers [Frost et al. (1982)1, [Lee (1981a, 
1981b)1, [Nathan—Kurlander (1987)1, and to the ref-
erences therein for details. Some of them are sum-
marized in the following list: 

Mean filter: it consists of a local smoothing of 
the observations. It also normalizes the filtered 
image, but introduces severe blurring. 

Frost filter: it is a linear convolutional proposal, 
derived from the minimization of the mean qua-
dratic error over a multiplicativel noise model. 
Dependence among observations is incorporated 
through an exponential spatial correlation func-
tion. It is adaptative. 

• cr-Lee Filter: it assumes a normal distribution, 
and trimmes those observations beyond the 2 -à 
interval. 

Lee Filter: a multiplicative noise model is adop-
ted. It is a local linear minimum mean square 
error filter, since it uses a linearization, by Tay-
lor expansion, around the mean. This approxi-
mation transforms the multiplicative model into 
an additive one, and then the Wiener filter is ap-
plied. 

Kuan/Nathan Filter: it is similar to the previ-
ous one. The difference is that this filter does 
not make any approximation. It is, also, an 
adaptative proposal. 

3 Notation and Important Distributions 

A model-based approach is adopted in order to de-
sign filters with good statistical properties. It is nec-
essary, then, to introduce the following formalism. 

Random variables will be denoted with upper-
case letters, and their outcomes with lowercase ones, 
i.e.: X denotes a random variable, and x denotes an 
outcome of X. Random vectors will be denoted in  

boldface type; for the previous case, and its corre-
sponding outcome, X and x would have been writ-
ten, respectively. 

The indicator function of the set A will be de-
noted 11A(x), i.e.: 

„ f" 1 if x E A 

	

= 	o if not. 

The cardinality of A is denoted #A. The set of the 
integers will be denoted Z, the set of the real numbers 
IR, the set of the positive real numbers will be written 
lR+ , and the set of natural numbers IN = {1,2, ...}. 

A random variable with standard normal distri-
bution will be denoted Zi, i.e., its density is 

h(z) 
	1  ex  ( 1 ,2 

	

P 	2  ) for ev,Ly z E IR. 

A random variable W has a x distribution with 
r > O degrees of freedom, and this ditribution will 
be denoted x r , if its density is 

	

wr-1 	w 2 

fw (w) = 	exp 	1114 .4.(w) 
25-- F(-5.) 	2 	— 

The k-th moment of W is given by 

IE(wk). 2'5 	2  , 	 (1) 

r (í) 
where the Euler's Gamma function is given by 

F(v -I- 1) = 	tu exp(—t) dt, for every u> —1, 

and holds that F(k) = (k — 1)! if k E IN. Other useful 
properties of this function can be seen in [Graham et 
al., 1988]. 

It is possible to see in [Koroliuk, 1986] that the 
distribution of a random variable V defined, for every 
n E IN, by 

V = E z? 
1<i<n 

is xt, if, for every i 	j, Zi is independent of Zi 
Statisticians often use the distribution of the random 
variable V 2 , called x2  distribution with n degrees of 
freedom, and denoted x i,2  . 

We shall be interested in the x 2  distribution, 
called standard Rayleigh distribution. It is the dis-
tribution of the distance of a point in IR2  to the origin 
that, starting from (O, O), walks in each axis a random 
and independent standard normal quantity. 

Let e E IR, it is said that Y is a Rayleigh 
random variable with parameter e (and this random 
variable will be denoted Y R.(e)) if its density is 

fe(Y) = exp 
1  (YV 
2 	 (Y). 	(2) 
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Its cummulative distribution function is obtained in-
tegrating with respect to y: 

Fe(t) = [1 - exp( - -1  () 2 )1111R+(t); (3) 
2 e 

this function shall be neccessary for the calculation 
of the filters. 

The reader can easily check that if X 
then eX R(e), i.e., Rayleigh random variables 
form a scale family of distributions. 

Let F: IR 	[O, 1] be the cummulative distri- 
bution function of an arbitrary random variable Y, 
and O < a < 1, then the a-quantile of Y is defined as 
inf{t E IR: F(t) > a}. This quantity will be denoted 
ya . 

Using equation (3) it is immediate to obtain the 
a-quantile of a 12.(0 distributed random variable: 

ya  = 21n 	 
1

1 
- a ' 

and, therefore, its median and inter-quartile range 
are, respectively, 

	

Med(Y) = yi = e-V2 ln 2, and 	 (4) 

IQR(Y) = y, - = 

4 

	

e (.■/2 ln 4 - 	In -
3

) . (5) 

If Y R(e), then its expected value and vari-
ance are given, using equation (1) and the scale prop-
erty, by 

lE(Y) = g, and Var(Y) = (2_ 721) e 2 , (6) 

respectively. The density of Y, equation (2), is shown 
ia Figure 1 for two different values of the parameter 
E. The value of the parameters for these densities was 
obtained applying the maximumlikelihood estimator 
(equation (13)) over homogeneous areas of the image 
shown in Figure 2. 

Some other important properties of this distri-
bution are 

--,-- 
/ 	\ k k 	(k 

\ / 	) 	F
) (7) 

2 Nrw(r - 3)  
71 = 

(4 - 70 3/ 2  
(8) 

32 - 3/r2  
72 = I A 	_\ 7 ( 9 ) 

/I )- 

m(Y) = E (10) 

where equations (7), (8), (9) and (10) are, respec- 
tively, the kth moment about zero, the skewness, the 
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Figure 1: Histograms ("+" and "o" resp.) and es-
timated Rayleigh densities (continuous and dashed 
lines, resp.) for the dark and light regions: E= 28.90 
and e = 77.90 respectively. 

Figure 2: Image SAR-580, L band. 

kurtosis and the mode of Y R(e). Notice that the 
quantities (8) and (9) do not depend on the param-
eter E. 

For every x E IR+ its integer part will be de-
noted as [z] , i.e., Lx j = max{k E IN: k < x}. For 
notational ease, the set of even numbers is denoted 
C, a,nd the set of odd numbers O. 

Let now a = (a i , 	, an ) be a n-dimensional 
vector of real numbers, and aA a subset of a, where 
aA = {ai} with jEAc {1, ..., n}. The vector a 
sorted in ascending order will be denoted a(.), where 
a(.) = (a n , i , , an . n ) (i.e. an: i < an: 2 < • • • < 
ara:ri)• The sample median of a is denoted as 

Q2(a)  = 	an:Ln121+1 
(an:n/2an:n 	

if E O 
/2-1-1) if n e e; 
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the lower sample quartile of a as 

if .e E O 	
(11) 

n  
Qi(a) = 	.1 	

a:(e+1)/2 
(an://2 an:e/2+1) 	E e; 

and the upper sample quartile of a as 

Q3(a) 	
an:(n+i--(t+i)/2) 	if E O 

-§.(a„,,,, + 1_/12 4- an:n -É/2) ift E C. 
(12) 

In equations (11) and (12) it was written: 

2 if n E 0 
= 

if n E e. 

4 Properties of SAR Images 

The support of the image will be denoted S. It is 
defined as a finite subset of Z 2  of the form S =S1 x 
S2 , with Si  = {ai, ..., bi} c Z for i = 1, 2. 

Within the SAR image processing community, 
the parameter e of the Rayleigh distributions is called 
"backscatter". One of the most accepted hypothe-
sis is that the marginal distribution of observations 
obeys a Rayleigh law, due to the presence of speckle 
noise. 

Assuming that the ground truth is a collection 
of positions, each with one among L possible values 
O < ei  < • • • <L < -Foo of backscatter, the imag-
ing system returns, for that position, the outcome of 
a Rayleigh random variable with the corresponding 
parameter. This is the multiplicative model proposed 
for this kind of imaging. 

This degradation model, that changes an un-
observed ground truth into an observed image, is a 
particular case of the model studied in [Bustos-Frery 
(1992)]. This is equivallent to supposing that, given 
the terrain backscatter, the speckle noise is indepen-
dent from pixel to pixel and that the imaging was 
obtained with one look and linear detection. Three 
complete references for these subjects are the papers 
[Goodman (1982)], [Kelly et ai. (1988)], [Derin et al. 
(1990)], and the references therein. 

This hypothesis could be verified, for example, 
using the X 2  and/or the Kolmogorov-Smirnov tests. 
Another simple way of doing it is estimating C(Y), 
the variation coefficient within homogeneous regions 
and checking that it is approximately constant since 
from equations (6), holds that 

6' 07)   - - 2 \/-1  - -1  C(Y) = E(y) 	7r  4 

Assuming valid this hypothesis, and since the 
true value of the parameter of the distribution is not 

known, this parameter could be estimated using a 
vector of observations y = , yy ) by means of, 
for instance, the maximum likelihood estimator 

1 

	

= \i/
—2 v E Y? • 	(13) 

i<i<v 

This estimator possesses all the desirable properties 
of asymptotic efficiency and consistency. 

Another estimator that frequently appears in 
the literature is the one based upon the first sam-
ple moment, given by the following equation: 

1 

	

Yi • 	 (14) 
V 	71" 

1<i<v 

Notice that the previous estimator, multiplied by the 
factor yields the sample mean of the observa-
tions. 

In this work, the problem of filtering an image 
shall be posed as the problem of estimating param-
eters within a window of that image. Therefore, 
in principle, the estimators given by equations (13) 
or (14) could be used. 

These estimators have a good behaviour when 
the observations within the considered sample are 
the outcomes of collectivelly independent identically 
distributed Rayleigh random variables. This could 
not be the case in real images due to several rea-
sons, the most evident is when the filter is acting 
over or dose to edges between regions with different 
backscatters or sharp features; other reason is corre-
lation among the observations, a phenomenum that 
may appear depending on the imaging system. 

When at least one of the hypothesis above is not 
valid, it is said that the sample comes from a con-
taminated model; else, the model is said to be pure. 
These models are carefully defined in the following 
section. 

5 The Models 

As it wa,s said before, two situations are considered: 
one (Definition 5.1) is when the filter is applied to ho-
mogeneous observations; the other (Definition 5.2), 
when observations from different populations are be-
ing filtered. Independence among random variables 
is always assumed. Let v be a positive integer and 
e > O. 

Definition 5.1 The randonz variablesYi , 	, Y„ sa- 
tisfy a pure Rayleigh model with parameter if they 
are independent identically distributed random vari-
ables each with density fe. 
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Definition 5.2 The random variablesYi , 	, Yt, sa- 
tisfy a contaminated Rayleigh model with parameter 
and lower contamination proportion a (with a> O); 
scale of lower contamination o (with O < o < e); 
upper contamination proportion IS' (with )3 > O and 

a -I- < and scale of upper contamination 
(with < 2 < +o° ) 	Y1, • • • , Yv are independent; 

,Yj are identically distributed, each with 
density .40 ; +1 , ..., "Y„_10„,i are identically dis-
tributed, each with density fe; and Yv - Lav .' +1, • - • , Yv 
are identically distribuied, each with density fe,. 

A situation where this contaminated model is 
applied could be, for example: v = 9, o = 10, 

= 50, 6 = 90, a = O and /3 = 0.3. In this case, 
nine observations of independent random variables 
are to be used in arder to estimate the parameter 

six of them are outcomes of a fe-distributed ran-
dom variable, the other three are outcomes of a f6- 
distributed random variable, with < 

6 Robust Filters 

[Bovik et al. (1983)], [Kie-Bum-Kashyap (1987)] and 
[Kundu et al. (1984)] are some references to the use 
of robust techniques in image processing. Two quite 
complete texts for a general approach to robustness 
in statistical inference are [Barnett-Lewis, 1978] and 
[Bustos, 1981], among others. 

In this work two kinds of robust estimators will 
be considered: two based upon the idea of trim-
ming extremal observations, and three based on or-
der statistics [Frery-Sant'Anna (1993)]. 

Proceeding with the idea that filiering is esti-
mating, and taking into account the possibility of 
having a contaminated sample of observations, the 
use of the following estimators is proposed (they are 
ali based upon the sample yw,  , of size v): 

&ML = 

&MO = 

É-MAD 	= 

ãQR = 

ã/led 	= 

.\ 

1 	
t) — a 

(15) 

(16) 

(17) 

(18) 

(19) 

2(2)— 2a) 	1'i 

2 	1 	v-a 

--(42kZW), Kl 
Q3(Yw) -  

Y" ir v - 2a E  
i=a+1 

1 	r. 	, 	\ 

(21(Yw)  

, 
K2 

I. 	n 	i 	\ 
—

K3

,0620'147 )1 

where a = Lvao , o < ao < 1/2, and (wri, • • • , Yv:v) 
denotes the vector yw = (y i , 	, y„) sorted ia as- 

cending order; z = (zi, 	zt,), with zi = Jj -  

Q2(Y)1 for every i E W. The trimmed observations 
are the Lva 0} smallest and the [vex o] biggest ones. 

The equations above are: the frimmed ML es-
timator with a proportion of deleted observations 
equal to 2a 0  (equation (15)), the irzmmed MO es-
timator with a proportion of deleted observations 
equal to 2a0 (equation (16)), the MAD (Median Ab-
soluie Deviation) estimator (17), the IQR estimator 
based on the inter-quartile range (18), and the Me-
dian estimator (19). 

The constants K1 , K2 e K3  are calculated, in ar-
der to make the respective estimators asymptotically 
consistent, ia the following manner: for 1<2 and K3 it 
is enough to know Y1/4, Y1/2 and y3/4 , and to apply 
the substitution method. In this way, using equa-
tions (4) and (5), the values K2 = V2 ln 4- V2 ln 4/3 
and K3 V2 ln 2 are obtained. 

The constant Ki can be obtained using numer-
ical tools, and its approximate value is K 0.4485. 
In order to obtain this value, it is neccessary to know 
the distribution of the random variable Z = 	- 
Med(X)1, where X 	7Z(1), and to define K 1-1  = 
Med(Z). 

In order to retain the mean grey levei of the 
image, the estimated values must be related to the 
expected value of the Rayleigh distribution. This is 
achieved using equation (6) and, thus, multiplying 
the estimated parameters by the factor 

The following situation will be always consid-
ered: only those pixels with a proper number of ne-
ighbours shall be filtered; those not satisfying this 
property will remam n unfiltered. The original and fil-
tered images will be denoted y = [ys l sE s and X' = 

[ s ],E s, respectively. Any of the filters above will be 
denoted it is a function of the form Jr:  Ew 
where E is the range for every pixel (for instance, 
E = {O, , 255} was used in our implementations). 

The support of the filter was written W. It is a 
"square" of size 2t + 1 centered on the origin: W = 

. , t} x {-t,. , 0, . . t}. So, the filter 
involves v = (2t -I- 1) 2  observations for every filtered 
pixel. Let us also define the translation of W by the 
point r = (ri, r2) as Wr = {s E Z2 : s - r E W}. 

Finally, the operation of applying a filter to an 
image can be written, for every s E S, as 

2   = 
{ VI.F(yw„ ) if W, C S 

8 (20) 
118 if not. 

If there would be the need to filter every pixel in 
the image, the definition (20) could be modified, in 
order to fit the different cases of #(W, n S). It was 
preferred not to do so in order to simplify the com-
putations and, by the way, to use the unfiltered ob- 
servations of the image as a fast form of checking the 
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Figure 3: ML filtered image. 

Figure 4: MO filtered image. 
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overall noise reduction. Other shapes for W could 
also be used as, for example, the ones derived from 
the notion of a L - norm: W = {s E S: lislir, < d}, 
where s = (si , s2), d E IN and 

1 811+  Iszi 	if L = 1, 

IlsIIL = 	\/ 	if L = 2 and 
if L = oo. 

A slight modification ought to be introduced in 
the definitions of ali the estimators above, in order 
to have the same range, E (a discrete finite set) for 
the original and filtered images. The closest integer 
to the filtered value is used, i.e., Vf.f.(yvv,)]. 

Moreover, if ali the observations within the win-
dow W had the same value, then the IQR and MAD 
estimators would be zero; they are then redefined as 

ãQR(Yw) = 'ÈivtAD(Yw)= Qi(yw) if = yv:v 
it is then clear that, whatever the filter used, 

= [28]3€.5 is an estimator of the unobserved image 
x = 7V7-7 [ 8 1 8 ES based on the observed image y = 
[y8 ],E s justifying, thus, the notation. 

7 Results 

The presented techniques are applied to an airb orne 
SAR (L band) image obtained over the region of Frei-
burg, Germany. 

Figure 2 is a 128 x 128 pixels part of the original 
image, where speckle noise is evident. Also, it has 
two distinguishable regions: the darker one, bare sou; 
and forest, the lighter one. 

Figures 3, 4, 5, 6, 7, 8, 9 are, respectively, the 
images filtered by the ML, MO, TML, TMO, MAD, 
IQR and Med algorithms. Ali the images were gen-
erated with the use of a filter of size = 5, and the 
trimming algorithms used a value ao = 0.225. 

In order to assess the noise reduction C -1 , the 
reciprocal of the coefficient of variation (signal-to-
noise relation) within homogeneous regions was used. 
The estimated values of skewness and kurtosis relate 
the relative "normality" of observations. 

Table 1 shows the values, rounded to the third 
decimal place, for a total number of 3500 observa-
tions taken from to the darker region. 

Table 2 shows the values, rounded to the third 
decimal place, for a total number of 2679 observa-
tions taken from to the lighter region. 

The observed values of both coefficient of vari-
ation and skewness, in both subareas, is "dose eno-
ugh" to the theoretical value, therefore, not revealing 
evidence against the use of Raighley distributions. 

The best algorithm with respect to the C -1  cri-
terion is the maximum likelihood (ML) estimator: it 
yieds an increase of about 107% and of about 139% 
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Figure 5: TML filtered image. Figure 7: MAD filtered image. 

Figure 6: TMO filtered image. Figure 8: IQR filtered image. 
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Figure 9: Med filtered image 

C-1  Skewness Kurtosis 
Theoretical 1.913 0.631 3.245 

Original 1.965 0.665 0.276 
ML 4.060 1.593 8.366 
MO 4.057 1.419 7.061 

TML 3.881 1.688 8.206 
TMO 4.018 1.201 5.296 
MAD 3.088 0.914 2.061 
IQR 3.082 1.103 2.364 
Med 3.881 0.960 3.429 

Table 1: Estimated values over the dark area 

C-1  Skewness Kurtosis 
Theoretical 1.913 0.631 3.245 

Original 1.879 0.573 -0.155 
ML 4.494 0.683 4.100 
MO 4.424 0.660 3.472 

TML 4.140 0.903 3.820 
TMO 4.199 0.595 2.135 
MAD 3.155 0.627 0.652 
IQR 3.185 0.611 0.579 
Med 3.971 0.491 1.100 

Table 2: Estimated values over the light area 

Dark Area Light Area 
ML 107% 139% 
MO 106% 135% 

TML 98% 120% 
TMO 105% 124% 
MAD 57% 68% 
IQR 57% 70% 
Med 98% 111% 

Table 3: Noise reduction over homogeneous areas 

for the dark and ligh areas, respectively. The worst 
robust algorithm with respect to the same criterion is 
the MAD (about 57% and 68%, for the same areas); 
see Table 3. Thus, the difference is not too strong, 
whilst the induced blurring is less severe with the 
worst of these techniques than with the use of the 
ML equation. The edge preserving property of the 
filters proposed can be checked rnaking a visual com-
parison between them and the ML filter. 

It is imporant to keep in mind that, in general, 
it is not possible to say that a certain filter is the 
best. The choice of a particular filter deppends on 
the application. 

Figure 10 shows the histograms of the original 
and filtered images. It is evident that, after filtering, 
there is a separation of classes. Before filters are 
applied the histogram of the whole image is unimodal 
inducing, thus, to a confusion between classes. 

8 Additional Information and Extensions 

The algorithms were implemented, in a single pro-
gram, in the C++ programming language; the SUN's 
C++ compiler, V. 2 was used. The results shown 
in this work were obtained running the program in 
a SUN SPARCstation 2, under OpenWindows V. 3 
and UNIX V. 4.1.1. The required time to obtain all 
the filtered images was 9 seconds, for the considered 
window (the bigger the window, the slower the exe-
cution: notice that two sortings -both carried out 
with calls to an internal "quicksort" function pro-
vided with the programming language- are applied 
over vectors of size v = (2t + 1) 2  for every filtered 
pixel). 

Displays and hardcopies were obtained with the 
SAO (Srnithsonian Astrophysical Observatory) im-
age utility, and estimations with the KHOROS sys-
tem. The constant K 1  and Figures 1 and 10 were 
obtained using the tools provided with the Pro-Mat-
lab V. 3.5h system. 

The performace of new constants Ki(v), K2(v) 
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and K3(v) that make (17), (18) and (19) unbiased 
estimators under the pure model, is being evaluated 
against the already defined ones. Also, proper scal-
ing values for the same purpose are being tested for 
equations (15) and (16). 

The authors intend to continue this work by 
proposing other robust filters and by using Monte 
Cano techniques for the assessment of the relative 
quality of these techniques. This quality shall be 
mea,sured in terms of consistency, efficiency and edge 
preservation. Different proportions of contamination 
and of their parameters values will be considered, 
along with the determination of suitable values of 
the constant a o . 

Quantitative techniques, rather than the quali-
tative evaluation here proposed, for the assessment 
of the (undesired) blurring induced by the filters are 
under evaluation. 

Listings are available, through e-mail, upon re-
quest. 
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Figure 10: Histograms, left to right and up to down, of the original image and of the ML, MO, TML, TMO, 
MAD, IQR and Med filtered images. 
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