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ABSTRACT

An important aspect of Mathematical Morphology is the description of set operators by a formal language, the Binary Mor-
phological Language (BML), whose vocabulary are dilations, erosions, antidilations, antierosions., union and intersection. This
language is complete (i.e. it can represent any set operator) and expressive (i.e. many useful operators can be represented as
phrases with relatively few words). Since the sixties special machines, the Binary Morphological Machines (BMMach’s), have
been built to implement the BML with increasing efficiency. However, designing useful BMMach programs is not an elementary
task. Recently, much research effort has been addressed to automating the programming of BMMach’s. The goal is to find suit-
able knowledge representation formalisms to describe operations over geometric structures and to transiate them into BMMach
programs. We propose an approach for the automated programming of transtation invanant operators: operators are described
either by logical expressions or by sample input-output lists and transtated into BMMach programs by semantic evaluation,
probably approximately correct (PAC) learning or automated deduction over abstract operations. The generated operators are
optimized by transformations on their decomposition structure. A priori knowledge is modeled by associating probability dis-
tributions to occurrences of images. The design of optimal and suboptimal morphological filters can be seen as particular cases of
the proposed approach. Some examples illustrate the main ideas presented.

1. INTRODUCTION

Binary Image Analysis is an important tool for various areas, such as industrial process control. office automation, quantita-
tive microscopy. etc.

A natural model of a procedure for Binary Image Analysis is a sef operator (i.e. a mapping over a powerset). Mathematical
Morphology (MM) is a general framework to study operators over complete lattices !, which includes set operators 23 The
central paradigm of MM is the decomposition of operators in terms of four classes of elementary operators: dilations, erosions,
antidilations and antierosions.

The rules for the representation of set operators in terms of the elementary operators can be described as a formal language ¢,
the Binary Morphological Language (BML). The vocabulary of the BML are the four classes of elementary operators and the
operations of union and intersection. A phrase of the BML is called a morphological operator. The BML is complete (i.e. it can
represent any set operator) and expressive (i.e. many useful operators can be represented as phrases with relatively few words).
Moreover, some morphological operators can be simplified into equivalent operators that use a smaller number of elementary
operators. An implementation of this language is called a Binary Morphological Machine (BMMach). and a program of a
BMMach is an implementation of a morphological operator on this machine.

Nowadays, there are many commercially available BMMach’s implemented in hardware 3© 78 or emulated in software, % 10
! which have been intensively used for Binary Image Analysis 3

Programming a BMMach can be a very difficuit task. In order to help the non experts in MM to use BMMach’s. some tools
have been proposed to automate the design of programs. These tools act as translators of the user knowledge about the problem.
expressed as high level abstract procedures. into morphological operators.



The existing systems are based on two main paradigms: rule-based expert systems 2 13 1 and automated deduction. 15
Expert systems employ a combination of stored heuristics to generate a set operator, while automated theorem provers give a
constructive proof that there exists an operator equivalent to a logical description. The steps in this constructive proof can be
interpreted directly as applications of the morphological operators. Each morphological operator generated by the expert system
or the theorem prover can be incorporated to the system, respectively, as a new rule or lemma. So these systems can learn and
improve their efficacy with use.

The main goal of this paper is to present a general model, based on formal approaches, to automate the design of programs for
BMMach’s. The proposed model is composed by the following main steps: description of a set operator as a logical expression or
as an input-output list of sample images; translation of this description into a morphological operator by semantic evaluation,
PAC leamning or automated deduction; simplification of the derived morphological operator using contextual information or
transformation of decomposition structures. For sake of simplicity, we stay restricted to the automatic programming of transla-
tion invariant (t.1.) operators.

An important characteristics of the proposed model is the symbicsis of three formal techniques of Artificial Intelligence:
automated deduction, PAC learning and program transformation via algebraic rewrite rules. A fundamental fact exploited for
this integration is the Canonical Decomposition Theorem for t.i. operators 16

In section 2, we give some basic definitions and results from MM theory. In section 3, we present the PAC learning model. In
section 4, we present our proposed model for automatic programming of BMMach’s. In section 5, we show an application exam-
ple. Finally, in section 6, we present some further discussion.

2. MATHEMATICAL MORPHOLOGY

For the automatic programming of BMMach’s some relevant aspects of the theory of MM on sets are: the canonical decom-
positions of set operators, the optimal filter design and the transformation of decomposition structures.

2.1 Canonical decompositions

Let P(E) be the collection of all subsets of a finite non empty subset £ (i.e. the collection of all binary images). Let C be the
usual inclusion relation on sets. Let X¢ be the complementary set of a subset X of E. We know that (P(E), C) is a compiete
Boolean lattice. !7 The intersection and union of X, and X, € P(E) are, respectively, X, N X, and X, UX,.

The set £ is assumed to be an Abelian group with respect to a binary operation denoted by +. The zero element of (E, +)is
denoted by o. Let X" be the transpose of asubset X, thatis, X' = {y € E: y = — x, x € X]. AsetX issaid to be symmetric if
X'=X

Foranyh € Eand X C E,theset X + h = {y € E: y = x + h, x € X} is called the translate of X by h. In particular,
X, =X

A setoperator is any mapping defined from P(E) into itself. A set operator y 1s called translation invarianz (t.1.) if and only if

(i)
pyX+h=pX)+h XEPE)hhcE
The kernel J(y) of a t.1. set operator y 1s the subcollection of P(E) defined by
K(y) = (X € P(E): o € w(X)}.
DEFINITION 2.1 Let B € P(E) . The t.1. set operators d4 and ¢, defined by

X)) = [x€EE. B+ 00X =9l (X PE)



and
gX)={x€EE- B+x)CX] (X€&€DPE)

are called, respectively, dilation and erosion by B. a

The t.i. set operators 6% and £ (i.e. the composition of the complement operator, respectively, with dilation and erosion) are
called, respectively. antidilation and antierosion, and are denoted 6*; and ¢*5. The parameter B that characterizes a dilation or an
erosion is called a structuring element.

A subcotlection [A.B] of P(E), with A C B, is called a closed interval iff

{A.Bl = (X € P(E): AC X CB).

The sets A and B are called, respectively, the left and right extremities of the closed interval.

A useful property of erosions and antidilations is that they are sufficient to decompose any t.i. operator in standard forms.
Banon and Barrera stated such property as the following theorem: 16

THEOREM 2.1 (Canonical Decomposition Theorem) Let v be a t.i. operator and J6(y) be its kemnel, then
PX) = U (e4X0)08u(X) : [A, Bl C K(y)] (X € PE)). a

This representation theorem may lead to inefficient computational representations for most t.i. operators, in the sense that a
smaller family of erosions and antidilations may be sufficient to represent the same operator.

A closed interval contained in a subcollection “x; of P(E) is called maximal in '\ if no other interval contained in *C properly
contains it. The set B(y) of all the maximal closed intervals contained in J(y) is called the basis of .

Banon and Barrera also proved that (i) can be replaced by B(y) in the decomposition formula, 16 that is,
pX) = U (e4X0 08" (X) 1 [A.B] € By)] (X € PEY).

In practice, the interesting operators are the ones that depend on a local neighborhood. A t.i. operator is called locally defined
within a window W C E iff

hE wX) < h € pXn W+ hy),
forall h € Eand X € P(E).

If y is a locally defined t.i. operator within the window W and [A.B] € B(y). then A, Bc € P(W). In other words, the
structuring elements which characterize the erosions and the antidilations used in the decomposition of locally defined operators
are subsets of the window W.

An important property of 1.i. operators is that they are closely related to Boolean functions. Let {0, 1} denote the set of
Boolean functions defined from P(W)to {0. 1}. Foreach Boolean function b € {0, 1}?**" we can associate the locally defined
t.1. operator Y, given by

VX)) =[x EE X — )nW) =1} (X € PE.

Conversely, for each locally defined t.i. operator  we can associate the Boolean function b, € ({0,1)** given by



b(X) = 1o yX) (X&PW).
The mappings b — y, and 1 — b, are reciprocal functions.

In the standard representation of b by a sum of minterms, each Boolean variable is associated with a point in W and each
minterm corresponds to an element of the kernel of 1,. The usual simplification of Boolean functions of the switching theory 18
can be applied to simplify the representation of y,. The determination of the so-called prime implicants of the Boolean function
b by the Quine-McCluskey method leads exactly to the basis of y,, since the prime implicants of b correspond to the maximal
closed intervals contained in %(y). In a prime implicant, the Boolean variables not complemented and complemented define,
respectively, the left extremity and the complement of the right extremity of the closed interval.

2.2 Optimal filter design
As shown by Dougherty 12 , the Canonical Decomposition Theorem can be useful to design optimal morphological filters. To

do so, we must put the morphological operators in the context of a theory of estimation: morphological operators are seen as
statistical estimators that are a function of a random vanable.

Let the mapping X with values in P(E) be a random set with probability distribution p(X). Let 77 be a set operator over P(E)
which niodels the noise that corrupts the images. Let y be the set operator over P(E) which estimates the thrue image.

Let 1Z! denote the cardinality of a subset Z of E. The mean absolute error (MAE) committed by the estimator v, when esti-
mating the random set X from the random set n(X). denoted MAE(y:), is given by

MAE(y) = Z KX Ny (X)) U (w00 XN p(X, (X))
where p(X,y(;(X))) is the joint probability distribution of the random sets X and y(7(X)).

The estimator operator v is called an optimal estimator iff MAE(y) < MAE(f), for any estimator operator 8 over P(E).

Assuming that the estimator y is a locally defined t i. operator within a window W with cardinality n, under stationary condi-
tion on X. the MAE expression simplifies to

MAE(y) = Z 0y = folx X x )l p(x g X ),

where x,.x,.... .x, are the n Boolean random variables observed in the window W, x, ., is the Boolean random variable to be
estimated and pfx, . x,.....x,,,) is their joint probability distribution.

Hence. reducing the search of optimal estimators to the class of locally defined t.i. operators implies in the search of Boolean
functions. that (as discussed in section 2.1) can be translated into canontcal decompositions of locally defined t.1. set operators.
Clearly, the distnibution p(x,.x,.....x,) is determined by the distribution p(X).

2.3 Tramsformation of decomposition structures

A set operator may be represented by an infinite number of BML phrases that are svnonvms (i.e. different phrases which
express the same operator). When implementing a set operator in a BMMach. we are interested in cheap realizations for the
operator, that 1s, BML phrases which involve the smallest possible number of elementary operators.

There exists a bijection between the set of the t.i. operators and the set of subcollections :P(:P(E)). In other words, each sub-
collection in M(M(E)) is the kemel of a unique t.i. operator. As. in the finite case. there exists a bijection between the set of
collections of maximal intervals of the subcollections in :P(:P(E)) and ‘P(P(E)) itself. then there exists a bijection between the set
of basis of t.i. operators and the set of t.i. operators itseif.



Thus, for each operation on the set of t.i. operators corresponds an equivalent one on the set of Li. operator basis and con-
versely. As the BML can be reduced to compositions of unions, dilations and complementations (of, equvalently. intersections,
erosions and complementations), it suffices to understand the composition of these operators with an arbitrary t.. operator to be
able to construct transformations of decomposition structures of t.1. morphological operators.

Let '\ be a collection of closed interval in P(P(E)). Let Max(:U) denotes the collection of maximal closed intervals of U U
PROPERTY 2.1 Let y and " be two arbitrary t.i. set operators. The following equalities hold:
1) BO ) = Max({{X + b, Y + b] : [X,Y] € B(y).b = B'});
2) By*) = Max({[A,B] € P(P(E)): VIX.Y] € B(y), ANYl = landIBNXI = 1}),
3) By vV y') = Max(B(y)UB(y")).

The Example 2.1 illustrates how to apply Property 2.1 in order to compute the basis of any t.i. set operator from a synonym
phrase 1n the BML.

EXAMPLE 2.1 Let the operator y be defined by y =1t A ¢, . where ¢ denotes the identity operator (le.
((X) = X, YX € P(E)) and B be a symmetric subset which contamns the origin o. This operator can be represented in terms of
unions, dilations and complementations as y = (1* V 3,%¢). To compute the basis of y, we compute incrementally the basis of
the operator compostitions from the basis of the identity operator:

1) B@) = ([lo}, E}}, 2) BGS) = {0, {o}]}; 3)BGx) = ({6, | —b)]:b<= BLL
4) B, = {[B, E1}; 95) B(* V dz9%) = {{B, E], {0.{o}]);
6) B(y) = {{lo], (b}]: b BN (o}*}.

The rules of Property 2.1 could also be used to solve the inverse problem, that is. to go from the canonical decomposition to
simpler decomposition structures. However. this is a much more complex problem, since for each state of the algonthm (analo-
gously to the transition of states in a chess game) there are inany possible next states jones 20 studied this problem in the case of
increasing t.1. operators (i.e. t.i. operators ¢ suchthat X C Y = p(X) C w(N. VXY = P(E))

3. PAC LEARNING

Computational Learning Theory?' 22 is one of the first attempts to construct a mathematical model for a cogmtive process
It provides a framework for studying a variety of algorithmic processes, such as those currently in use for training anuificial neural
networks. Here. we apply this framework to design set operators.

We understand concepr as a subset of objects in a predefined domain. An example of a concept is an object from the domain
together with a label indicating whether the object belongs to the concept. If the object belongs to the concept, it I1s a positive
example, otherwise it is a negative example. Concept learning is the process in which a learner constructs a good approximation
to anunknown concept, given a small number of examples and some prior tnformation on the concept to be learned. In the follow-
ing, we formalize these ideas.

Let T be a set, called the alphabet to descnbe examples. In this paper, £ will be the Boolean alphaber {0, 1} We denote the
set of n-tuples of elements of £ by X" Let X be a subset of " We define a concepr, over the alphabet X, as a function
c: X—{01}

-

The set X will be referred to as the example space. and its members as examples. An example v < X for which (v} = 1 1s
known as a positive example, and an example for which ¢(v) = Ois known as a negative example. So, provided that the domain is
known, ¢ determines. and is determined by. its set of posiuve examples. So sometmes it 1s helptul to think of a concept as a set in
that way.



The set of all possible concepts to be learned will be referred to as the Aypothesis space and denoted by H. The concept ¢t € H
to be deternuned is called the target concept. The problem is to find a concept k & H, called the hvpothesis, which is a good
approximation for ¢.

A sample of length m is just a sequence of m examples, that is, an m-tuple x = {x,,x,,...,x,} in X The sequence may
contamn the same value more than once. A training sample s is an element of X” x {0, 1}, that is,

s = ((xi, b)), (x5, 5,), ...\ (xm b)),

where the x, are examples and the b, are O or 1. The value of b, is given by a teacher and specifies whether , is a positive or a
negative example. There are no contradictory labels, so that if x, = x, then b, = b,.

A learnuing algorithm s simply a function L which assigns to any training sample s for a target concept + € H a hypothesis
h e H Wewrite h = L(s).

Let s« be a probability distribution (or probability measure) on X. Given a target concept ¢ < H, we define the error of any
hypothesis h & H. with respect to 1, as the probability of the event A(x) = t(x), that1s, .

er(h.t) = u{x € X h(x) = t(x)}.
When a given set X is provided with the structure of a probability space. the product set X ™ inherits this structure from X. The
corresponding distnbution on X™ is denoted #™. Usually, the components of the m~tuple (x|, x,. ..., x,,) are assumed to be “inde-

pendent” variables. each distributed according to the probability distribution st on X.

Let S(m.t) denote the set of training samples of length m for a given target concept ¢, where the examples are drawn from an
example space X. As there 1s a bijection ¢ : X™ — S(m, 1) for which ¢(x) = s, the following equality hold

1™ s < Sm.t) . s has property P} = n™x & X™: ¢(x) € S(m.1) has property P}.

DEFINITION 3.1 We say that the algorithm L is a probably approximately correct (PAC) learning algorithm for the hypothesis
space H if, given two real numbers ¢ and & (0 < r,d < 1), then there is a positive integer m, = my(e,d) such that for any target
concept 1 < /. and for any distribution s on X, whenever m = my,

n"™{s < Sim1) . er(L(s)) < ¢} > 1 = 9.

The function m, = m(s.3) is called example complexity. .

A learning algorithm L for H is consistent iff, given any training sample s for a target concept ¢ € H, the output hypothesis
agrees with f on the examples in s, that 1s, A(x,) = #(x,) (! < 1 < m). Foragiven s € S(m. 1), we denote by H[s] the set of all
hvpotheses consistent with s, that is,

His] = thE H: h(x) = tx) (]l <i<m
Given ¢ (0, 1), the set
B, = th< H: er,(h) =}

i1s called the set of ¢ -bad hypothesis for 1.

We say that the hvpothesis space H is potentially learnable if, given two real numbers £ and 6 (0 < ¢,8 < 1), there is a
posttive integer m, = m.(r.3) such that. whenever m = m,

H"s € Stm.t): HIsInB, =0} > 1 -6



for any probability distributionp on X and any ¢ © H.

The following theorems are proved to hold: 22
THEOREM 3.1 If A is potentially learnable, and L is a consistent leaming algonithm for A, then L 1s PAC.
THEOREM 3.2 Any finite hypothesis space 1s potentally leamable.

The following example presents an algorithun for learning concepts which are Boolean functions.

EXAMPLE 3.1 Let D,, be the space of ail those Boolean functions of n variables which can be expressed as the disjunction of
monomials of length at most k (n = k > 1). The following leaming algorithm was proposed by Vahant: 2!

set A := disjunction of all monomials of length at most &.
fori:=1tomdo
if b, = Oand A(x,) = 1
then defete monomnals . #> for which . #.(x)) = 1;
L(s) .= h

The hypothesis space D, has cardinality bound above by 20 (e, D, < 2%y Thus, as Valiant’s algonithm 1s consistent. it 1s
a PAC leaming algorithm.

According to Anthony and Biggs, 22 the example complexity of Valiant’s algorithm 1s
mo(e,0) = [(k/e) In 2n + (1/e) In (1/8)] .
for any distribution p and with no restriction in the hypothesis space H = D,,,.
4. A MODEL FOR AUTOMATIC PROGRAMMING OF BMMach’s

The proposed model for the automatic programming of BMMach's 1s presented as a data flow diagram in Figure 1. The goal
of this model is to translate the user knowledge about the target operator and the application domain into morphological opera-
tors or, equivalently, into programs for BMMach's.

The user knowledge can be represented by two distinct knowledge representation formalisms: logical expressions or input-
output lists of examples. Logical expressions are used alternatively in two distinct representations torms: full specification of
operators and abstract image operations.

In full specification of operators, windowed images (1.e. X — hinW_h € E) and image operators are seen as propositional
formulae in which basic propositions are associated to points in a finite discrete square W of size (2n)*, centered at the ongino. In
order to make the correspondence between images and propositions more natural, we index the propositions with the position of
the corresponding points in W. The alphabet of this language consist of a finite set of basic propositions
P = [Gog.P-n-n - -Pnn) and the conventional connectives (i.e. —, =, v and A). Proposition p,, 1s associated to the point
(i.)) of an windowed image (i.e. (X — A)NW), while proposition g,, 1s associated to a pont of the output image (1.e.
y(X) N {h}). Basic propositions correspond to black and white points, respectively, when they are true and false. Finally, a set
operator is represented as a formula of the form P < g,,, In which £ contains only propositions p,, (¢.g. see Example 4.2).

In abstract 1mage operations, as presented in Joo !5, morphological operators are structured in “packets” that characterize
abstract operations frequently employed in Binary Image Analysis (e.g. difference between subsets. or some special operators
like sieve filter) and geometrical properties like convexity, topological structure, or size. The abstract operations and properties
are encoded as first-order sentences, whose semantics 1s given by the packed of morphological operators they represent (e.g
assuming subsets to be represented by the constant symbols a. b. ¢, ... and vanables X, Y. Z. . ., difference can be represented as a
function diffiX, ¥), whose interpretation can be the subset X 1 ¥*). This particular nerpretation forces (i the model theory



sense) some relations between the resulting functions and predicates. From those, some relations are selected and encoded as
either axioms or inference rules in a corresponding first-order theory of MM, necessarily correct but not necessarily (and most

probably not) complete.

O Target operator O

Domain o

e}
O
Fult ro Abstract
specification ymage sampling image operations
Learrung
. Procedure
Normalization abstraction

]

Abstract
Normal Form

Boolean
cxpression

Context-based
simplification

Standard Procedure
decomposinon generaton
A1 cal
operator )
Rewrite

rules

Fig. I = A model for the automatic programming of BMMaclh's

When the user does not have complete information to specify a first-order function or relation to describe an operator or it is
to complex to do that, he can specify approximately this operator by a list of input-output examples. These examples are pairs
consisting of an mput windowed image (i.e. (X ~ A) N W) and the corresponding value in the output image (i.e. y(X) N (h)). This
list of examples teeds a learming algorithm, suntlar to the one presented in Example 3. 1. The output of this leaming algorithm is a
Boolean function which charactenzes a set operator that 1s consistent with the examples and satisfy the PAC quality £,

The following example tllustrates the use of the learning algorithm of Example 3.1 to obtain a locally defined t.1. set opera-
tor.

EXAMPLE 4.1 Let y be a set Gperator locally defined within the honzontal window W = {(— 1.0),(0.0).(1.0)}, defined by
the input -output parrs of 1mages of Figure 2a. The corresponding Boolean function f,, defined in Figure 2b, is

flx . x) = (—x, Ax)V(x, A o),

8



where x, is associated to the point ( — 1.0), ... The canonical form of the corresponding set operator is
Y= (o ASio) V Lrgy A ‘qumﬂ-

Note that this set operator, which performs the extraction of vertical edges, is fully specified by the input-output image pairs

(X, (X)) and (X,,w(X,)). If only the pair (X,,4(X,)) were given the learned function would be f, 3
N 111
H Y X x| flx xox) fy(xy xp 1)
Y E ™
- 000 0 0
_— 00 1 0 0
X, WX 010 | 1
1 00 0 0
LT I o1 1 1 1
= - v H - 110 1 1
3 - — b= -
H = - H 1 01 0 {
11 111 111 0 0
X p(X,)
a b

Fig. 2 — a) Input —output image pairs. b) Truth table of the Boolean function.

Once created. the full specification of operators and the abstract image operations are normatized. The Boolean functions
generated by the leaming algorithm also are normalized into disjunctive normal forms. The normalization process build standard
inputs for the following processes and eliminate redundant logical expressions. A full specification of an operator can be trans-
late by semantic evaluation into a Boolean function and conversely.

General descriptions in the form of normalized logical expressions or normalized Boolean functions may be simplified by
context, which may be given etther by further logical expressions or by a list of examples (i.e. a list of input images). By context
simplification we understand the appropriate use of available a priori information about the image domain tn order to simplify
the specification of the set operators. When a context is introduced (1.e. the domain of set operators is restricted) a large number
of operators become equivalent. and we can choose an operator between simpler ones (i.¢. ones corresponding to shorter expres-
sions). When the context is specified by a list of examples the logical description of the set operator acts as the teacher in the
learming process. When the context and the operator are specified by logical expressions symbolic simplification can be used.

The following example iflustrate the context simplification, when both operator and context are given in the full specifica-
tion form.

EXAMPLE 4.2 Let’s study the problem of recogmzing 3 x 3 squares within a 5 x § window. positioned arbitrarily in the
image. The full specification for this shape recognition task 1s

/\ P, A /\ s A /\ -p - A /\ -p., A /\ -p “* e

2 J

- l=sij=s1 -2=1=52 -2=i=s2 - l=sgys Sl
The corresponding basis of the set operator ' is given by the single mterval [A.B). where A = { - 1.0,1}* and
BT = { — 2.- 1.0.1.2}*n .4 Now assume that we know a priori that the only occurring shapes in our mput images are 3 x 3

squares and 3 x 3 squares with a hole in the muddle. In other words. we know that whenever we find a 3x3 cross, the cross must
belong to the target shape. The context simplification gives (see 23 for details)

9



A Py ARA p, N Poo oo
P Ef- L1y jEL- L1}

The basis of the simplified operator y' reduce to the single interval {A',B'], where A" = ((— 1,0),(1,0),(0,0),(0, - 1),(0, )}
and B’ = E. Observe that ' = ¢, is simpler than y = £, A &', since its decomposition involves just one erosion, while ¥
decoimposition involves an erosion and an antidilation. a

The generation of morphological operators from Boolean functions is straightforward (see section 2.1), while the transiation
of abstract logical descriptions into morphological operators can be done from constructive proofs of relations between proper-
ties of input and output images represented as first-order theorems. By using some automatic theorem proving techniques (like
the Resolution-based techniques adopted by Joo !5, or even more sophisticated techniques like proof pianning 24 ), given the
specification of a set operator task in terms of expect relations between properties of input/output images, we can obtain an auto-
matically generated morphological operator that performs the desired transformation.

The structure of the generated morphological operators could be changed by using program transformation techniques
which explore Property 2.1.

This model should improve with use, since the set operators generated are incorporated to the model as new logical expres-
sions.

5. APPLICATION EXAMPLE

Here, we illustrate the use of PAC leaming in order to generate a simple set operator which performs optimal images restora-
tion. We take the image of Figure 3a and corrupt it with subtractive punctual noise, with an unknown distribution (Figure 3b). We
choose arbitranly the3 x 3 cross as the window,1.e. W = {(0,1).(~ 1,0),(0,0).(0, 1),(0, = 1)}. From the oniginal image and
the corrupted one. we build a frequency table which estimate the distribution of P(W) x {0, 1}. The elements of P(W) are taken
from the noise imagen(X) by the operation (#(X) — h) N W, and the corresponding ideal restoration values (i.e. O or 1) are taken
from the original image X by the rule (1 iff {o} 0 (X — h) = 0). In order to establish a training sample, for each subset in P(W)
is chosen the most frequent value associate (1.e. O or 1). Figure 3¢ shows the frequency table generated from the 1mages of Figures
3a and 3b. This traming sample feeds the PAC learming algonthm of Example 3.1.

For this problem, the example complexity. with ¢ = 6 = 0.01,is m, = 1,611. The number of examples experimentally
used was 3,844 (i.e. 62%). The learned Boolean function is

folxp XXy X, X5) = X VX3 VX,
where x, 1s associated to the point (0. 1), x, 1s associated to the point (— 1,0), ... The corresponding set operator is
V= oy V ooy V Ero-
Observe that 1n the PAC learning of the optimal restoration operator a third quality parameter could be defined. besides € and §.
This parameter should reflect the cormectness of the statistical decision done in order to establish the training sample. Figure 3d
presents the image of Figure 3a cormipted by other realization of the same noise source. Figure 3e presents the result of the resto-
ration by the generated operator y.
6. CONCLUSION

We introduced the use of PAC leatnung theory in MM, by deriving the canonical decomposition of t.1. set operators through

learming of Boolean functions. The proposed methodology was applied to the problem of designing optimal t.i. morphological

filters.

We defined the nules for the transformation ot decomposition structures for the general case of t.1. set operators and showed
how they can be used to compute the basis of any t.1. set operator for which is known a representation as a BML phrase.
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Fig. 3 — Image restoration example. a) Thruth image. b) Training noisv image. ¢) Table of frequency.
d) Test noisy image. ¢) Restored image trom the test noisy image.

We presented a general mode! for the automatic programming of BMMach’s. based on formal approaches. The proposed
model is supported conceptually by results on set operator decompositions, PAC learning and applied automated deduction. and
integrate logical descriptions with sample based descniptions.

The advantage of the generation of set operators via automated theorem proving is its ergonomicity, since image transforma-
tions and operators are presented in terms of intuitively sound concepts encoded as "packets’” of morphological operators. Thus,
being reliable. easy to check and generally efficient. Moreover, the generated procedures can still be easily translated as proposi-
tional expressions and further normalized, producing final implementations equatly efficient to the ones resulting from Boolean
specification or PAC learning.

The main drawback of the theorem proving approach when compared to the full specification or leaming approaches 1s its
inherent incompleteness: the first-order theory of “’packets” of morphological operators 1s not guaranteed to capture every t.1. set

operator, even If we encode every possible relation between “’packets” of operations.

This last observation characterizes the complementarity of the two approaches. and makes clear why we believe it is impor-
tant that they coexist.
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