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ABSTRACT 

An important aspect of Mathematical Morphology is the description of set operators by a formal language, the Binary Mor-
phological Language (BML), whose vocabulary are chlations, erosions, antidilations, antierosions, union and intersection. This 
language is complete (i.e. it can represent any set operator) and expressive (i.e. many useful operators can be represented as 
phrases with relatively few words). Since the sixties special machines, the Binary Morphological Machines (BMMach's), have 
been built to implement the BML with increasing efficiency. However, designing useful BMMach programs is not ao elementary 
task. Recently, much research effort has been addressed to automating the programming of BMMach's. The goal is to find suit-
able knowledge representation fomialisms to describe operations over geometric structures and to translate them into BMMach 
programs. We propose an approach for the automated programming of translation invariant operators: operators are describecl 
either by logical expressions or by sample input-output lists and translated into BMMach prograrns by semantic evaluation, 
probably approximately correct (PAC) leaming or automated deduction over abstract operations. The generated operators are 
optimizecl by transformations on their decomposition structure. A priori knowledge is modeled by associating probability dis-
tnbutions to occurrences of images. The design of optimal and suboptirnal morphological filters can be seen as particular cases of 
the proposed approach. Some examples illustrate the main ideas presented. 

1. INTRODUCTION 

Binary Image Analysis is ao important tool for various areas, such as industrial process control. office automation. quantita-
tive microscopy, etc. 

A natural model of a procedure for Binary Image Analysis is a ser operator (i.e. a mapping over a powerset). Mathematical 

Morphology (MM) is a general framework to study operators over complete lattices 1 , which includes set operators 23  . The 
central paradigm of MM is the decomposition of operators in terms of four classes of elementary operators: dilations, erosions, 
antidilations and antierosions. 

The mies for the representation of set operators in terms of the elernentary operators can be descnbed as a formal language 4 , 

the Binary Morphological Language (BML). The vocabulary of the BML are the four classes of elementary operators and the 
operations of union and intersection. A phrase of the BML is called a morphological operator. The BML is complete (i.e it can 
represent any set operator) and expressive (i.e. many useful operators can be represented as phrases with relatively few words). 
Moreover, some morphological operators can be simplified into equivalent operators that use a smaller number of elementary 
operators. Ari implementauon of this language is called a Binary Morphological Machine (BMMach), and a program of a 
BMMach is ao implementation of a morphological operator on this machine. 

Nowadays, there are many commercially available BMMach's implemented in hardware 56 7  or emulated in software, 9 111  
11  which have been intensively used for Binary Image Analysis 3 . 

Programming a BMMach can be a very difficult task. In order to help the non experts in MM to use BMMach's, some tools 
have been proposed to automate the design of programs. These tools act as translators of the user knowledge about the problem. 
expressed as high levei abstract prccedures, into morphological operators. 



The existing systems are based on two main paradigms: rule-based expert systems 12 13 14  and automated deduction. IS  

Expert systems employ a combination of stored heuristics to generate a set operator, while automated theorem provers give a 
constructive proof that there exists an operator equivalent to a logical description. The steps in this constructive proof can be 
interpreted directly as applications of the morphological operators. Each morphological operator generated by the expert system 
or the theorem prover can be incorporated to the system, respectively, as a new mie or lemma. So these systems can leam and 
improve their efficacy with use. 

The main goal of this paper is to present a general model, based on formal approaches, to automate the design of programs for 
BMMach's. The proposed model is composed by the following main steps: description of a sei operator as a logical expression ou 
as an input-output list of sample images; translation of this description into a morphological operator by semantic evaluation, 
PAC leaming or automated deductiono, simplification of the derived morphological operator using contextual information or 
transformation of decomposition structures. For sake of simplicity, we stay restncted to the automatic programming of transla-
tion invariant (ti.) operators. 

An important characteristics of the proposed model is the symbiosis of three formal techniques of Artificial Intelligence: 
automated deduction, PAC leammg and program transforrnation via algebraic rewrite mies. A fundamental fact exploited for 
this integration is the Canonical Decomposition Theorem for ti. operators 16 . 

In section 2, we give some basic definitions and results from MM theory. In section 3, we present the PAC leaming model. In 
section 4, we present our proposed model for automatic programming of BMMach's. In section 5, we show an application exam-
ple. Finally, in section 6, we present some further discussion. 

2. MATHEMATICAL MORPHOLOGY 

For the automatic programming of BMMach's some relevam aspects of the theory of MM on sets are: the canonical decom-
positions of set operators, the optimal filter design and the transformation of decomposition structures. 

2.1 Canonical decompositions 

Lei T(E) be the collection of ali subsets of a finite non empty subset E (i.e. the collection of ali binary images). Let C be the 

usual inclusion relation on seis. Lei r be the complementary set of a subset X of E. We know that (T(E), C) is a complete 

Boolean lattice. 17  The intersection and union of X, and X, E ',NE) are, respectively, x, n X1 and X, U X,. 

The sei E is assumecl to be an Abel ian group with respect to a binary operation denoted by +. The zero element of (E, +) is 

denotecl by o. Let X' be the transpose of a subset X, that is, X' = ly E E: y = - x, x E X). A set X is said to be symmetric if 

X' = X. 

For any h E E and X C E. the sei X+ h = IyEE:y=x+ h, x E X is called the translate of X by h. In particular, 
X„ = X. 

A set operator is any mapping defined from (E) into itself. A sei operatorty is called translation invariant (ti.) if and only if 

(i ff) 

v, (X + h) = v,(X) + h (X E =.1)(E), h E E). 

The kernel :VOA of a ti. sei operator is the subcollecuon of ,P(E) defined by 

= X E ,P(E): o E 

DEFINITION 2.1 Lei B E P(E) . The ti sei operators (S B  and rs  defined by 

15 8(X) = Is E E (8' + x)n X 	0} (X E (E)) 



and 

,(X) = fx E E: (B + x) C X } (X E T(E)) 

are called, respectively, dilation and erosion by B. 

The ti. set operators t.V„ and c`, (i.e. the composition of the complement operator, respectively, with dilation and erosion) are 

called, respectively. antidilation and antierosion, and are denoted M B  and é.  8. The parameter B that characterizes a dilation or an 

erosion is called a structuring elernent. 

A subcollection [A, B] of T(E), with A C B, is called a closed interval iff 

[A,B] = IX E T(E) :AEXC B). 

The sets A and B are called, respectively, the left and right extremities of the closed interval. 

A useful property of erosions and antidilations is that they are suffícient to decompose any ti. operator in standard forms. 
Banon and Barrera stated such property as the following theorem: 16  

THEOREM 2.1 (Canonical Decomposition Theorem) Let ip be a Li. operator and 3G(tp) be its kerne), then 

tp(X) = 	,(X) fl Ô 8 ,(X) : [A, ff] E. '3(;(1p)1 	(X E 9,(E)). 

This representation theorem may lead to inefficient computational representations for most ti. operators, in the sense that a 
smaller family of erosions and antidilations may be sufficient to represent the same operator. 

A closed interval contained in a subcollection i of T(E) is called maximal in i if no other interval contained in properly 

contains it. The set BOA of ali the maximal closed intervals contained in X(tp) is callecl the basis of tp. 

Banon and Barrera also proved that ..K;(i,P) can be replaced by B(tp) in the decomposition formula, 16  that is, 

= tJ VA (X) n (5. 8„(X) [A, 131 E R(tP)1 (X E --NE)) 

In practice, the interesting operators are the ones that depend on a local neighborhood. A ti. operator is called 1ocailv defined 

within a window W E E iff 

h E ip(X) <4> h E Ip(X n (sv + h)), 

for ali h E E and X E .P(E) 

1f' is a locally defined ti. operator within the window W and [A , 131 E B(;'), then A, B E r.P(W). In other words, the 
structuring elements which charactenze the erosions and the antictilations used in the decomposition of locally defined operators 
are subsets of the window W. 

An important propeny of ti. operators is that they are closely related to Boolean functions. Let 0.1 	denote the set of 

Boolean funcuons defined from .P(W) to )0, 1 ). For each Boolean function b E 10, 	we can associate the locally defined 
ti. operator 	given lY 

= 	E E : b((X — x)r) W) = I 	(X E iP(E)). 

Conversely, for each locally defined ti. operator we can associate the Boolean function b E )0, 1 	given by 
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b(X) = I 4e. o E ti,(X) (X E '35 (W)). 

The mappings b 	and ip ■-• b„ are reciprocal functions. 

In the standard representation of b by a sum of minterms. each Boolean variable is associated with a point in W and each 

minterm corresponds to an element of the kemel of tp b . The usual simplification of Boolean functions of the switching theory 111  

can be applied to simplify the representation of xp b. The determination of the so-called prime implicants of the Boolean function 

b by the Quine-McCluskey method leads exactly to the basis of 1,Posince the prime implicants of b correspond to the maximal 

closed intervals contained in 3G(1p). In a prime implicant, the Boolean variables not complemented and complemented define, 

respectively, the left extremity and the complement of the right extremity of the closed interval. 

2.2 Optirnal filia &sign 

As shown by Dougherty 19  , the Canonical Decomposition Theorem can be useful to design optimal morphological filters. To 

do so, we must put the morphological operators in the context of a theory of estimation: morphological operators are seen as 

statistical estimators that are a function of a random variable. 

Let the mapping X with values in T(E) be a random set with probability distributionp(X). Let rj be a set operator over ‘Y(E) 

which models the noise that cornipts the images. Let ip be the set operator over P(E) which estimates the thrue image. 

Let IZI denote the cardinality of a subset Z of E. The mean absolute error (MAE) committed by the estimator ti), when esti-

mating the random sei X from the random set i(X). denoted MAE(tp), is given by 

MAE(tP) = E 1(X o V, (71(X))`) u (V)(v(X)) O  

where p(X,I,r(q(X))) is the joint probability distribution of the random sets X and li, (71(X)). 

The estimator operator tp is called an opima' estimator iff MAE(tp) s MAE(13), for any estimator operator (3 over .P(E) . 

Assuming that the estimator tp is a locally defined ti. operator within a window W with cardmality n, under stationary condi-

tion ou X. the MAE expression simplifies to 

MAE(ti , ) = y 	 x 

where x,, x 2 , ... x, are the n Boolean random variables observed in the window W, x„ , is the Boolean random variable to be 

estimated and 	 is their joint probability distnbution. 

1 lencc, reducing the seatch of optimal estnuators to the class of locally detined t.i. operators imphes In the search of Boolean 

funcoons. that (as discussed iii section 2. I ) can be translated into canonical decompositions of locally defined li. set operators. 

Clearly, the distnbution p(x,, x ....x,) is deternuned by the distribution p(X). 

2.3 Transformado', of decomposition structures 

A set operator may be represented by ao infinite number of BML phrases that are monyms (i.e. different phrases which 

express the same operator). When implementing a set operator In a BMMach, we are interested in cheap realizations for the 

operator, that is. BML phrases which involve the srnallest possible number of elementary operators. 

There ex sts a brjection between the set of the tr. operators and the sei of subcollections .PME)). In other words, each sub-

collection in ,P(.P(E)) is the kerne] of a [migue ti. operator. As, in the finde case. there exists a bijecuon between lhe sei of 

collections of maximal intervals of the subcollections in ,T ,(,r(E)) and ír(.P(E)) itself, then there exists a buection between the set 

of basis of Ii. operators and the set of 1.i. operators itself. 



Thus, for each operation on the sei of ti. operators corresponds an equivalent one ou the sei of ti operator basis and con-

versely. As the BML can be reduced to compositions of unions, dilations and complementations (or, eqLuvalently, intersections, 

erosions and complementations), it suffices to understand the composition of Mese operators with an arbitrary ti. operator to be 

able to construct transformations of decomposition structures of ti. morphological operators. 

Lei be a collecuon of closed interval in 	Lei Max(.1.;) denotes the collection of maximal closed intervals of O 'X. 

PROPERTY 2.1 Let tj,  and tp' be two arbitrary ti. set operators. The following equalities bold: 

1) B(S) = Max( [X + b,Y + 	: [X, 1/1 e B(tp), b ta B`1); 

2) B(Vr) = Max( [A, 8] E '.P(3) (E)) : V[X,111 E B(tp), 14 0 Y1 = 1 and IB' Xl = 11); 

3) 80p v tp . ) = Max(B(tp) U B(110). 

The Example 2.1 illustrates how to apply Property 2.1 in order to compute the basis of any ti. sei operator from a synonym 

phrase in the BML. 

EXAMPLE 2.1 Lei the operator 	be defined by tp = i A 	, where i denotes the identity operator (i.e. 

t(X) = X, VX E 3) (E)) and B be a symmetric subset which contatos the ongin o. This operator can be represented In terms of 

unions, dilations and complementauons as vi = (I' v 9 1 , ). To compute the basts of tp, we compute incrementally the basis of 

the operator compositions from the basis of the idenuty operator: 

1)8(i) = l[lol, Ell; 	2) 8(t")= 1[0, 1(311); 3) B(4/') = ([0, 	 B(i 

4) B(1)8`1') = l(B, E1); 5) Ei(i v 	= 1[B. E], [0, 1 o )11 ; 

6) B(tp) = 	 : b tE B 

The mies of Property 2.1 could also be used to solve the inverse problem. that is, to go from the canonical decomposition to 

simpler decomposition structures. However, this is a much more complex problem, since for each state of the algonthm anato-

gously tolhe transition of states in a chess game) there are many possible next states fones 20  studied this problem in the case cif 

increasing ti. operators (i.e. tf. operators such that X C Y tp(X) Y E .r(E)). 

3. PAC LEARNING 

Computational Learning Theory 21 22  is one of the first attempts to constmct a mathematical mode' for a cognitive process. 

It provides a framework for studying a variety of algonthnuc processes, such as thosecurrently In use for training artificial neural 

networks. Here, we apply dois framework to design sei operators. 

We understand concept as a subset of objects In a predefined domam. An example of a concept is an object from the domam 

together with a label indicating whether the object belongs to the concept. 1f the object belongs to the concept, it is a positive 

example, otherwise it is a negative example. Concept learning is the process In which a korner constructs a good approxi manou 

to anunknown concept, given a small number of examples and some pnor information on the concept to be learned. In the follow-

ing, we formalize these ideas. 

Lei 1 be a set, called the alphabet to desenhe examples. In dois paper,r. will be the Boolean alphabet ( 0. I I. We denote the 

sei of n-tuples of elements of 1 by I". Let X be a subset of 	We define a concept, over the alphabet :E, as a tunction 

c X 	0, 1 

The sei X will be referred loas the example space, and as members as examples. An example v E X for which c(y) = I is 

known as a positive example, and an example for which c(y) = O is known as a negative example So, provided that the domam is 

known, c determines, and is determined by, as sei ot positive examples. So somenmes a is lielptul to MIM.: of a concept as a set mmm 

that way. 



The sei of ai I possible concepts to be learned will be referred toas the hypothesis space and denoted by H. The concept t e H 
to be determined is called the target concept. The problem is to find a concept h C H. called the hypothesis, which is a good 
approximation for 1. 

A sample of frngth m is just a sequence of m examples, that is, ao m-tuple x 	x,,x2 ,...,x„,} in X". The sequence may 
contam the same value more than once. A training sample s is an element of X'" x 10, 1 ) , that is, 

s = ((x i , 6 1 ), (x2, b2), . . 

where the .r, are exarnples and the b, are O or I. The value of b, is give.n by a teacher and specifies whether x, is a positive or a 
neganve example There are no contradictory labels, so that if x, = x, then b, 	b,. 

A learning algorithm is simply a function L which assigns to any training sample s for a target concept t E Ha hypothesis 
h E H. We write h = L(s). 

Lei p be a probabilitv distribution (orprobability measure)on X. Given a target concept t E H. we define the error of any 
hypothests 	E ti, with respect to t, as the probability of the event h(x) 	t(x), that Is, . 

er„(h,t) = ttlx E X : h(x) 	t(x)). 

When a given sei Xis provided with the structure of a probability space, the product set X" inherits thrs structure from X. The 
corresponding distnbution on X"' is denoted Usually, the cornponents of the m-tuple (x ,,x 1 ,...,x„,) are assumed to be "inde-

per ideia" variables, each distá buted according to the probability distá butionp on X. 

Let S(m,t)denote the sei of training sarnples of length m for a given target concept t, where the examples are drawn from ao 
example space X. As there is a bijection 0 : X"' 	S(m, t) for which 0(x) = s, the following equality hold 

/els E S(m,t) s lias property P = ,It'"fx E X' 0(x) E S(m, t) has property P} 

DEFINITION 3.1 We say that the algorithrn L is a probably approxtmately correct (PAC) leaming algorithm for the hypothesis 
space H if, given two real numbers r and (5 (0 < r,tS < I), then there is a positive integer m o  = mo(r,i)such that for any target 
concept t E II, and for any distribution i on X, whenever m m o , 

tt"{s C S(m,t). er„(L(s)) < r) > 1 - 5. 

The function m„ - m„(,[,(5) is cal led example complexity. 	 2 

A leammg algorithrn L for H is consistent iff, given any traming sample s for a target concept 1 E H. the output hypothesis 
agrees with t ou the examples ei s, that is, h(x,) = t(x,) (1 5 i 5 m). For a given s E S(m, t), we denote by H[s] the sei of ali 

livrotheses consistem with s, that is, 

/i[s] --- {h E H : h(x,) = t(x) (I 5 i 	/77)1. 

Given o 	(0,1), the sei 

B, = { h E II : er„(h) 	r) 

Is cal led the sei of f -bad hypothests for t. 

We say that the hypothesis space H is potentially learnable if,given two real munbers r and (5 (0 < r,15 < I), there is a 
positive integer 	- 	StiCh that, whenever m z m, 

	

fils e S(m,t) H[sin B, = 	> 1 - 



for any probability distnbution i on X and any t E H. 

The following theorems are proved to hold: 22  

THEOREM 3.1 If H is potentially leamable, and L is a consistem leaming algonthm for H, Men L is PAC. 

THEOREM 3.2 Any finite hypothesis space is potentially leamable. 

The following example presents an algorithm for leaming concepts which are Boolean functions. 

EXAMPLE 3.1 Let D"be the space of all those Boolean functions of n vanables which can be expressed as the disjunction of 
monomials of length at most k (n 	k > 1). The following leaming algorithm was proposed by Valiam: 21  

set h := disjunction of ali monomials of length at most k. 
for i:=I to m do 

if b, = O and h(x,) = I 
then delete mononuals .11 ,  for which fl,)= I; 

L(s) : = h 

The hypothesis space D "has cardinality bound above by 20Á  (i.e. 1Dol < 	Thus, as Valiant's algontlim is consistem, it is 

a PAC leaming algorithm. 

According to Anthony and Biggs, 22  the example complexity of Valiant's algorithm Is 

m0(c.(5 ) = [(k/e) In 2n + (I /e) In (l/(5)1 , 

for any distribution g and with no restriction in the hypothesis space H = Do,. 

4. A MODEL FOR AUTOMATIC PROGRANIMING OF BNIMach's 

The proposed model for the automatic programming of BMMach's is presented as a data flow diagram in Figure I. The goal 
of ttus model is to translate the user knowledge about the target operator and the application domam alto morphological opera-
tora or, equivalently, into programa for BMMach's. 

The user knowledge can be represented by two distinct knowledge representanon formalisms: logical expressions or input-
output lista of examples. Logical expressions are used altematively in two distinct representations forms: full specification of 
operators and abstract image operations. 

In full specification of operators, windowed images (i.e. X - 	W. h E E) and image operators are seco as propositional 

formulae In which basic propositions are associated to points In a firme  discrete square W of size (2n)', centered ai the origin o . In 
order to make the correspondence between images and propositions more natural, we index the propositions with the position of 
the corresponding points in W The alphabet of this language consist of a finite set of basic propositions 

= 	 .p„) and the convennonal connectives (1.e. -4, 	v and ^). Proposition p,, is associated to the point 
(i, of an windowed image (i.e. (X - h)fl W), while proposition go , is associated to a poliu of the output image (i e. 
vi(X)11 )h1). Basic propositions correspond to black and white points, respectively, when they are troe and false. Finally, a ser 
operator is represented as a formula of the fonn P q 0.0, in which P contams only propositions p ,  (e g. see Example 4.2). 

In abstract image operations, as presented in Joo 15  , morphological operators are structured In "packets" that characterize 
abstract operanons frequently employed in Binary Image Analysis (e.g. difference between subsets. or some special operators 
h ke sieve filter) and geometncal propernes like convexity, topological structure, or size. The abstract operanons and propernes 
are encoded as first-oder sentences, whose sernantics is given by the packed of morphological opei ators they represem (e.g 
assunung subsets to be represented by the constant symbols a, b, c, .. and vanables X. Y. Z, difference can be represented as a 
function diff(X, Y), whose interpretation can be the subset X ri Y`). This particular interpretation torces (in the mode! tlieory 



sense) some relations between the resulting functions and predicates. From those, some relations are selected and encoded as 
either axioms or inference rales In a corresponding first-order theory of MM, necessanly correct but not necessarily (and most 
probably not) complete. 

Fig. 1 - A inadei for the automatic progranuning of BMMach's 

When the usei does not have complete information to specify a first-order function or relation to descnbe ao operator or it Is 
to complex to do that, Fie can specify approximately this operator by a list of input-output examples. These examples are paus 
consisting of an input windowed image (i.e. (X - h) ii W) and the corresponding value In the output Image (i.e. V, (X) ri I h I). This 
list of examples feeds a learnmg algorithm, sinular to the one presented ia Example 3.1. The output of riais 'emir -1g algonthrn is a 
Booleiut function which chatacterizes a sei operator that is conststent with the examples and sansfy the PAC quality f, 

The following example til ustrates the use of the learning algonthin of Example 3.1 to obtain a local ly defined tf. set opera- 
ar 

EXAMPLE 4.1 Lei y be a ser Operator locally defined within the horizontal window W - I( - 1,0),(0,0),(1,0)1, defined by 
the 1nm-output paus ot -  mines of Figure 2a. The corresponding Boolean funcnon f,  defined In Figure 2b, is 

M-rox2 , -r3) = ( - x, A x2) V Gr: A  



where x ;  is associated to the point ( - 1,0), . The canonical form of the corresponding set opei ator is 

= (r (01 A 	(o)) V  ( 	A  

Note that this set operator, which performs the extraction of vertical edges, is fully specified by the input-output image pairs 

(X I , IP(X i)) and (X 2 , '(X,)). If only the pau (XI, tP(X i)) were given the leamed function would be 

••••••111 	 MIM 
111•111111•111111 	 MEM MI MI 	 EM E Eli 
UM 	MD 	 ti' 	 MN R IIIIIII 
•• •• 	 --, 	 EM • MN 
MIME 

 
••••••• 

111W11•11 	 MIEM 

X, 	 ti, (X1) 

MIEM 	 MIM 
MIMEM 	 INUME 
INE E IIIIII 	 Si, •• E •• 
EU um 	 ---, 	 MUI um 
.111 II all 	 IIIIIII E ME 
MIME 	 MIMEM 
MEM 	 MIMEM 

X, 	 'p(X) 

a 

xi x2 x2 Mx, x, x,) j.,, (x, x 2  x 3 ) 

000  0 O 

0 	0 	1 O O 

010  1 1 

100  O O 

011  1 1 

110  I I 

101  O 1 

I 	1 	I O O 

Fig. 2 - a) Input -output image pairs. 	Truth table of the Boolean function. 

Once created, the full specification of operators and the abstract image operanons are normalized. The Boolean functions 

generated by the leaming algonthm also are normalized into disjunctive normal forms. The normalization process build standard 

inputs for the following processes and eliminate redundant logical expressions. A full specification of an operator can be trans-

late by semantic evaluation into a Boolean function and conversely. 

General descriptions in the forni of nonnalized logical expressions or normalized Boolean functions may be simplified by 

context, which may be given either by further logical expressions or by a list of exarnples (i.e. a list of input images). By context 

simpl ification we understand the appropnate use of available a priori information abola the image domam mn order to simplify 

the specification of the set operators. When a context is introduced (i.e, the domam of set operators is restncted) a large number 

of operators become equivalent, and we can choose an operator between simpler ores (i.e. ones corresponding to shorter expres-

sions). When the context is specified by a list of examples the logical description of the set opei ator acts as the teacher in the 

leaming process. When the context and the operator are specified by logical expressions symbol ic simplification can be used. 

The following example illustrate the context simplification, when both operator and contem are given in the full speci fica-

tion form. 

EXAMPLE 4.2 Let's study the problem of recogruzing 3 x 3 squares within a 5 x 5 window. positioned arbitrarily In the 

image. The full specificanon for this shape recognition task is 

A p,, 	A A -pA 	A -p 2 A 	A - ir :, A 	A -/, - 2 , 
- 	5 I - 2,22 	- 2 s 	s 2 	 - I .s• 

The corresponding basis of the set operator 	is given by the single inerval [A , B], where .4 = 	- 1,0, 11 2  and 

= - 2, - 1.0. 1.2)2  O .4 Now assume that we know a priori that the only occumng shapes mn our input ima,ges are 3 x 3 

squares and 3 x 3 squares with a Isole In the middle. In other words, we know that whenever we ind a 3x3 cross, the cross must 

belong to the target shape. The context simplification gives (see 23  for details) 

9 



A 	A 	A P,, A  voo — go. 
, E I — 1.11 	I E{ — 1.11 

The basis of the simplified operator 	reduce to the single interval (A', Er], where A' = 1( - 1, 0),(1, O), (0, 0), (0, - ), (0, 1)1 
and B' = E. Observe that 1,1' .  = r A . is simpler than P = rA  A Mo, since its decomposition involves just one erosion, while 
decomposition involves an erosion and an antidilation. 

The generation of morphological operators from Boolean functions is straightforward (see section 2.1), while the translation 
of abstract logical descriptions into morphological operators can be done from constructive proofs of relations between proper-
ties of input and output images represented as first-order theorems. By using some automatic theorem proving techniques (like 
the Resolution-based techniques adopted by Joo 15  , or even more sophisucated techniques like proof planrung 24  given the 
specification of a set operator task in terms of expect relations between properties of input/output images, we can obtain an auto-
matic ally generatecl morphological operator that performs the desired transformation. 

The stnicture of the generated morphological operators could be changed by using program transformation techniques 
which explore Propeny 2.1. 

This =dei should i inprove with use. since the set operators generated are incorporated to the model as new Logical expres-
sions. 

5. APPLICATION EXAMPLE 

Here, we illustrate the use of PAC leammg in order to generate a simple set operator which perfonns optimal images restora-
tion. We take the image of Figure 3a and corrupt it with subtractive punctual noise, with an unknown distribution (Figure 3b). We 
choose arbitrarily the3 x 3 cross as the window, i.e. W = 1(0, I),( - 1,0), (O , 0) ,  (0,  I), (O ,  - 1)1. From the original image and 
the comipted one, we build a frequency table which estimate the distribution of ':P(W) x 10, 1). The elements of 3(1V) are taken 
from the noise imageq(X) by the operation (rj(X) - h) n W, and the corresponding ideal restoration values (i.e. Dor 1) are taken 
from the original image X by the mie (1 iff (o) n (x• — /1) 0). In order to establish a traming sample, for each subset in ‘.P(W) 
is chosen the most frequent value associate (i.e. Dor I). Figure 3c shows the frequency table generated from the images of Figures 
3a and 3b. This training sample feeds the PAC 'uniu -1g algonthm of Example 3.1. 

	

For Uns problem, the example complexity, with r = 	= 0.01, is m o  = 1.611. The number of exarnples expenmentally 
used was 3,844 (i.e. 62 2 ). The leamed Boolean funcuon is 

= x , V 	V x 5 , 

where x, is associated to the point (0, 1), x 2 s associated tolhe point ( - 1, O), ... The corresponding set operator is 

V' = t; ■ 01 )} V r o o.o» V  f' ;(o 

Observe that in the PAC learning of the optimal restoration operator a third quality parameter could be defined, besides e and N. 
This parameter should reflect the correctness of the staustical decision done in order to establish the traming sample. Figure 3d 
presents the image of Figure 3a cornipted by other realization of the same noise source. Figure 3e presents the result of the resto-
ration by the generated operator 

6. CONCLUSION 

We int roduced the use of PAC lealning theory in MM, by denving the canonical decomposition of ti. sei operators through 
leaming of Boolean functions Tlie proposed rnethodology was applied to the problem of designing optimal ti. morphological 
fi Iters. 

We defined the mies for the transformation of decomposition stmcnues for the general case of t. 1. set operaiors and showed 
how they can be used to compute the basis of any t.i sei operator for which is known a representation as a BML phrase. 
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1 i 1 

xi x2 -r3 x, x, Mx, ... x5 ) Frequency 
— 

0 0 0 0 0 0 18 

-e- -19-0—  er -e —  — — 1—  — — —6-  --- 

0 0 0 0 1 1 17 

0 0 0 1 0 O 175 

0 0 1 0 0 1 15 

0 0 1 0 1 1 156 

0 I 0 0 0 0 175 

0 I 0 1 0 0 1554 

1 0 0 0 0 1 18 

1 0 0 0 1 1 152 

1 O 1 O O I 155 

10 1 O 1 1 1403 

Fig. 3 — Image restoration example. a) Thruth image. b) Training nois-y image. c) Table of frequenc-y. 
cli-Test noisy image. e) Restore() image Irou' the test noisy image. 

We presented a general model for the automatic prograrnming of BMMach's, based on formal approaches. The proposed 

model is supported conceptually by results on set operator decompositions, PAC leaming and applied automated deduction, and 

integrate logical descriptions with sample based descriptions. 

The advantage of the generation of set operators via automated theorem proving is its ergonomicity, since image transforma-

tions and operators are presented in terms of intuitively sound concepts encoded as "packets" of morphological operators. Thus, 

being reliable, easy to check and generally efficient. Moreover, the generatedprocedures can still be easily translated as proposi-

tional expressions and further normalized, producing final implementations equally efficient to the ones resulting from Boolean 

specification or PAC leaming. 

The main drawback of the theorem proving approach when compared to the full specification or le,aming approaches is its 

inherent incompleteness: the first-order theory of "packets" of morphological operators is not guaranteed to capture every ti. set 

operator, even if we encode every possible relation between "packets" of operations. 

This last observation charactenzes the cornplementanty of the two approaches, and makes clear why we believe d is impor-

tant that they coexist. 
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