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ABSTRACT 

In this paper a comprehensive account of the distributions associated to three SAR image 
formats (namely, complex, intensity and amplitude) and types of classes (homogeneous, 
heterogeneous and extremely heterogeneous) is presented, along with their main properties 
and relations. The backscatter of extremely heterogeneous targets is modelled by the 
square root of generalized inverse Gaussian distribution, that yields to an extension of K 
distributions for the return. Modelling with K distributions is applied to SAR data over 
amazonian areas, showing the discriminatory capability of the methodology. For the sake 
of completeness, some other distribution that do not fit in the multiplicative model (but 
that have proved their usefulness) are discussed. 

1 INTRODUCTION 

The precise knowledge of the statistical properties of SAR data plays a central role in image processing 
and understanding. These properties can be used to discriminate types of land use and to develop specialized 
filters for speckle noise reduction, among other applications. Several studies have been conducted in order to 
relate physical features and statistical properties of SAR data and, in order to do this, some hypothesis and 
distributions are considered. 

The multiplicative model has been widely used in the modelling, processing and analysis of synthetic aperture 
radar images. The multiplicative hypothesis states that the return results from the product between the speckle 
noise and the terrain backscatter. The distributions associated to the speckle noise can be assumed known since, 
when the number of elementary backscatters is large enough and no one dominates the return, among other 
factors, they either are the bivariate normal or they only depend on the number of looks. Several distributions 
could be used for the backscatter, aiming at the modelling of different types of classes and their characteristic 
degrees of homogeneity; for instance, for some sensor characteristics (wavelenght, angle of incidence, polarization, 
etc.), pasture is more homogeneous than forest which, in turn, is more homogeneous than urban areas. Most 



distributions for the (amplitude) backscatter do not yield to closed-form distributions for the return, being a 
constant (homogeneous), a square root of Gamma (heterogeneous) and a square root of generalized inverse 
Gaussian distribution (extremely heterogeneous areas, resp.) important exceptions. 

Common distributional hypothesis for 1-look return data and homogeneous targets are the Exponential and 
Rayleigh distributions, for quadratic and linear detections respectively. When the observed region cannot be 
assumed as homogeneous, other distributions are considered. Among these, the K distributions have received 
a great deal of attention in the literature (Jakeman, 1973; Jakeman and Pusey, 1976; Jao, 1984). 

This paper reviews the derivation of those distributions arising in the multiplicative model under several 
hypothesis, and extends classical results with the proposal of distributions that have the K distributions as 
particular cases. These distributions arise using the square root of generalized inverse Gaussian distribution 
as the model for the amplitude backscatter, a distribution here proposed to model extremely heterogeneous 
targets. 

This work is organized in the following manner: all the cases (complex, intensity and amplitude) for the 
speckle noise are treated separately; distributions that model the terrain backscatter (amplitude and intensity 
cases) are then reviewed, and the generalized inverse Gaussian distribution is introduced. Once the speckle 
noise and the backscatter are characterized, attention is devoted to the distributions induced for the return. 
Other distributions that do not arise from the multiplicative model, but that have proved their usefulness in 
SAR data modelling and analysis, are also presented. Finally, applications to SAR data analysis are presented. 

2 THE MULTIPLICATIVE MODEL AND THE SPECKLE NOISE 

Speckle noise is always associated to coherent-illuminated scenes, such as those obtained by microwaves, 
laser, ultrasonography, etc. This kind of noise appears due to interference phenomena between the incident and 
reflected signals. This kind of noise makes visual and automatic interpretation a difficult task, though it may 
carry important information. As will be seen in this section, images suffering from speckle noise should not be 
treated with the usual additive-noise derived tools (Wiener filter, for instance), since speckle corrupts the signal 
in a multiplicative manner and in the amplitude and intensity formats it is non-Gaussian. 

The multiplicative model is a common framework used to explain the statistical behavior of data obtained 
with coherent illumination. It assumes that the observations within this kind of images are the outcome of 
the product of two independent random variables: one (X) modelling the terrain backscatter, and other (Y) 
modelling the speckle noise. The former is always considered real and positive, while the latter could be complex 
(if the considered image is in complex format) or positive real (intensity and amplitude formats). 

Therefore, the observed value is the outcome of the random variable defined by the product Z = X Y. 
In order to make a clear distinction between the aforementioned formats, the indexes "C" , "I" and "A" will 
be used for the complex, intensity and amplitude cases, respectively. Vectors will be explicitely denoted in 
boldface. 

Complex speckle is usually assumed to have a bivariate normal distribution, with independent identically 
distributed components having zero mean and variance 1/2. These marginal distributions are denoted here 
as N(0, 1/2); therefore, Y c = (Y, Y) N2(0, 1/2) denotes the distribution of the paire This assumption 
is justified considering that every resolution cell is formed by a large number of point scatters and, therefore, 
that the returned signal might be regarded as a random walk. The resolution cell in this case can be modelled 



as a collection of N point scatters, and the received signa' as a sum of randomly phased phasors. If the k-th 
elementary phasor is expressed as vke, where vk is its amplitude and Ok its instantaneous phase, then the 
received signal is E v k  exp(i0k) = Y A eXP (i 

1<k<N 

where YA is the resulting amplitude and (i5 is the (instantaneous) resulting phase. 

Decomposing the received signal into real and imaginary parts YR and Yu, where 

YR = YA COS Ç = E vk cook) 
1<k<N 

Yç = YA sin 	= E vk sin(Ok), 
1<k<N 

it is possible to derive their distributional properties making the following assumptions for every k: 

1. the amplitude vk and the phase k  of the k-th elementary phasor are independent of each other and of 
the amplitudes and phases of all other elementary phasors. 

2. Ok is uniformly distributed over the range [O, 2r). 

3. N is large and the Lindeberg conditions hold. 

In this case it can be proved that YR and Yu are independent and identically distributed as N(0, cr 2 ), with 

°" 2  = El<k<N E(vi). A convenient parametrization consists of setting (7 2  = 1/2, since pure speckle is being 
modelled witirout regarding terrain properties and it is desirable to have an intensity speckle mean equal to 1. 

The aforementioned signal amplitude  (YA) and phase (0) are related to the real and imaginary components 
(YR and Yu) through YA = + = II and = arctan (Y2/YR). It is usually employed the term 
intensity for Y2 = Yr. It is easy to prove that under the above conditions Yi has an Exponential distribution, 
YA has a Rayleigh distribution and (k is uniformly distributed over the range [O, 270. 

Multilook intensity speckle appears by taking the average over n independent samples of Y1 = lIYc 11 2  
leading, thus, to a Gamma distribution denoted here as Yi F(n, n) and characterized by the density 

nn 
fyi (y) = 

F(n) 
	yn -1  exp(—ny), y , n > O. 

Multilook amplitude speckle results from taking the square root of the multilook intensity speckle and, 
therefore, has a square root of Gamma distribution, denoted here as YA Nff(n, n) and characterized by the 
density 

2nn fyA  (y) = 
F(n)

y2n-1 exp(_ny2), 	n > O. 

Though the number of looks n should, in principie, be an integer, seidom this is the case when this quantity 
is estimated from real data due to, among other reasons, the fact that the mean is taken over correlated 
observations. It is therefore interesting to call n the equivalent number of looks, and estimation procedures to 
determine this quantity are discussed in Yanasse et al. (1994). 



3 AMPLITUDE BACKSCATTER 

Three main models for the amplitude backscatter yield to closed-form distributions for the return: a constant 
(used to model homogeneous areas), a square root of Gamma distribution (used to model heterogeneous areas) 
and the square root of a generalized inverse Gaussian distribution (proposed here as a model for extremely 
heterogeneous areas). The introduction of the third distribution was originated in the analysis presented in 
Yanasse et al. (1994, 1995), since there it was noticed that the observations from some areas were heterogeneous 
to an extent that even K distributions could not take account of. The definition of a constant as a random 
variable is used to fit every case into a completely stochastic model. 

The backscatter from a completely homogeneous area is said to have the distribution of a constant, here 
denoted as XA C(V -5), if its cumulative distribution function is given by Fx,,,(x) = 1[fi 1/2, 00 )(x), where > O 
and l A  denotes the indicator function of the set A. 

The backscatter from a heterogeneous area is said to have a square root of Gamma distribution with 
parameters a, A > O, here denoted as XÁ N/r(a, A), if its density is given by 

2Aa 
fxA (x) = 	(a)x2a-1 exp(—Ax 2 ), x, n > O. 

F  
This hypothesis is mainly based on empirical evidence and on the fact that the product of two square root of 
Gamma distributed random variables has an explicit density, though some theoretical results relating backscatter 
with birth-and-dead processes can be found in Caves (1993). Its r-th order moments are given by 

r (a + 712)  

	

E(X) 	 Ar/ 2 F (a) 

The backscatter from extremely heterogeneous areas is said to have a square root of generalized inverse 
Gaussian distribution, here denoted as XÁ "-' N -1 / 2 (a, „), , ,\  A) if its density is given by 

( Ahr /2 	 7 

	

fx.A.(x) = Ka (2,\A_), 
2x 	exp 	Ax2) 	x > O, 

x2  

where Ka  denotes the modified Bessel function of the third kind and order a, and the parameters space is given 
by 

{ 7 > 0, A > 0 if a < 0 
y > O, A > O if a = O . 	 (1) 
7 > O, ) > O if a > O 

Its r-th order moments are given by 
) ri 4 Ka+r /2 (2 'N[7-Á)  

	

E(X) ( -Ã" 	
Ka (2 NhA) 

Important limiting properties that relate the aforementioned distributions can be posed in the following 
manner 

N-1 / 2  (a, 7, A) 	N/-Ca, A) :-/3-+' C (V7-3) , 	 (2) 
$yo

or/A-4./3 

where "D" denotes the convergence in distribution of the associated random variable. The properties stated 
in relations (2) assure the unicity of the model, since every type of amplitude backscatter can be treated as 
the outcome of a special case of XÁ 

N-1/ 2(a  , 7,  )) Figure 1 shows the three aforementioned cases, with 
parameters chosen such that three means are equal. 
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Figure 1: Amplitude backscatters: constant, square root of Gamma and square root of generalized inverse 
Gaussian densities. 

4 INTENSITY BACKSCATTER 

The distributions associated to the intensity backscatter follow immediately applying the transformation 
XI = X3 .  yielding, thus, to a constant X1 is  C(f3) for the homogeneous case, and to the following densities 
corresponding to the heterogeneous and extremely heterogenous cases (the densitites are related by fx A (x) = 
2x fx, (x 2 )) 

A. 
fx,(x) = F(a)

xa-1 exp(—Ax), 	x,a,A >, O; 	 (3) 

À1  a/2 

fx,(x) = 	 x a- 1 exp (- 1  — Ax) 	 (4 
2Ka  (2VW) 	

) 
,  

with x > O and the parameters space given in (1). The distributions characterized by densities (3) and (4) 
are called Gamma and generalized inverse Gaussian, resp., and will be here denoted as X1 	r(a, 7) and 

N-1 (a,7
, 
À). Their r-th order moments are given, respectively, by 

E(XF r(a+1  
À. , r(ce 

E(Xii = (1) r/2 	
(2,\R 

k 	K cv \F—y x) 

Important limiting properties that relate the aforementioned distributions can be posed in the following 
manner 

N-1  (a, 7, À) — + F (a, A) ---+ C (#), 	 (5) 
-y10 



The properties stated in relations (5), in analogy with the amplitude case, assure the unicity of the model, since 
every type of intensity backscatter can be treated as the outcome of a special case of N -1 (a, 7, )). An 
extensive account of properties and applications of the generalized inverse Gaussian distribution can be seen 
in Jçárgensen (1982). It should be noted that this distribution includes the distribution of Gamm.a (7 = O), 
reciprocai of Gamma (À = O) and Hyperbola (a = 1/2) random variables as particular cases (Barndorff-Nielsen 
and Baesild, 1981). 

5 COMPLEX RETURN 

Once defined the distributions for X" 44, and given that the complex speckle is assumed to be Yc = (Y R , Yu ) 
N(0, 1/2), it is immediate to derive the three associated marginal distributions for the complex return, which is 
given by Zc = X A.YG,  = X .A.(YR,N; they are N(0, 0/2) if the area is homogeneous and, for the heterogeneous 
and extremely heterogeneous cases respectively, the distributions characterized by the following densities 

fz.(x) = 	lAa-4-1/2  IXI a-1/2Ka-1/2 (21XINÍA) F(a) V 	Ir 	 (6) 

	2)) fz.(x) = 	
1 	\I(Ahr  ( 7  + x2 \ (a-1/2)/2 

Ka (2,47.7) 	7r 	k, 	) 	Ka-112 (2 	(7-f- x 	, 	(7) 

where Zo  denotes either the real or imaginary part of Zc. The distributions characterized by densities (6) 
and (7) are called, respectively, complex K and complex G, and are denoted here as 1Cc (a, A) and Çc(a, 7, À), 
respectively. Their r-th order moments are given, respectively by 

O 
(2r),( .27hrr/ (2a) )  (1 3  	

if r is odd 
E(Z) = { (r — 1)) eise 	, 

K.+,12 2 NEY-À-  ( 2._ \ r/4 , { 
Kar  2\r—y), 	̀- ' 1.  

, A,  ) O (1  . 3 	(r  ...._ 1))  iefisre.is odd 
E(Z) =  

Important limiting properties that relate the aforementioned distributions can be posed in the following 
manner 

gc (a, 7, À) 2-+ KG,  (a, À) -2-'. N (O, 0/2) , 	 (8) 
710 

The properties stated in relations (8), in analogy with the amplitude and intensity cases, assure the unicity 
of the model, since every type of complex return can be marginally treated as the outcome of a special case 
of Zo  Çc(a,7, À). Figure 2 shows the three aforementioned cases, with parameters chosen such that the 
variances of the three random variables are equal. 

Using the parametrization presented here, it can be easily checked that the complex G distribution is a 
particular case of the generalized hyperbolic distribution. Many of its properties and applications can be seen 
in Barndorff-Nielsen and Baesild (1981) and references therein. 
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Figure 2: Complex returns: normal, complex K and complex G densities. 

6 AMPLITUDE RETURN 

In order to obtain the distribution of the amplitude return, the distribution of the product ZA = XA-YA has 
to be computed for every case of the backscatter. It is possible to prove that from the constant backscatter follows 
a Nii"-(n, n1)(3) distribution, with i3 = a/A, and that heterogeneous and extremely heterogeneous backscatters, 
as previously characterized,, yield to distributions with the following densities 

4Anx 

	

ÍzA (x) = 	(Anx2 ) (a+n)/2-1Ka_n (
2XfA7-1,) 	 (9) F(a)F(n) 

—n)/2 2nn (A/7r 	2n/2  x  — 1 ( 7 + nx2 (a —n)/2 

	

 = 	 Ka _ n  (2VA (7 + nx2)) 	(10) 
F(n)R a  (2VA/7) 	A 

The distributions characterized by the densities given in equations (9) and (10) are called amplitude multilook 
K and G, and here denoted by 1CA (a, n) and ÇA (a, 7, A, n), respectively. Their r-th order moments are given, 
respectively, by 

= (72A)-- r/2 F ni-rr n2 )rr  ota+r 2 , 

E(Z.2 = (-133,-)
r/4 K4.712(2 ryX)F(n+r/2) 

K at  (2.\/)1-'(n) 	• 

These distributions are related by the following limiting properties 

GA (a, 7, n) 	KA (a, n) ---> N/Tr (n, n/f3) . 	 (11) 
ry10 

cr/X—rfil 

In this manner, every amplitude return can be seen as the outcome of a particular case of a ÇA(a, 7, n) 
distributed random variable. Figure 3 shows the three aforementioned cases, with the same parameters chosen 
for Figure 2 and n = 1. 
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Figure 3: Amplitude returns: square root of Gamma, amplitude K and amplitude G densities. 

7 INTENSITY RETURN 

In order to obtain the distribution of the intensity return, the distribution of the product Z/ = X1 •Yi has 
to be computed for every case of backscatter, or simply to apply the aforementioned densities transformation 
fx,(x) = 2x fx,(x 2 ) to the amplitude densitites. It is possible to prove that from the constant backscatter fol-
lows a F(a, n/,(3) distribution, with )3 = a/A, and that heterogeneous and extremely heterogeneous backscatters, 
as previously characterized, yield to distributions characterized by the following densities 

2An  
(Anx) 2-1 Ka-n, (2N/Anx) 	 (12) 

fzi(x) = r(a)r(n) 

fzi(x) = 	
nn (A/7)a/ 2  xn_i (7 + 

nx)(a-n)/2 
K c,„ (2VA (7 nx)) 	 (13) 

F(n)Ka  (2.VrFy) 

The distributions characterized by the densities given in equations (12) and (13) are called intensity multilook 
K and G, and here denoted by 1CI(a, n) and gr(a,7, n), respectively. These distributions are related by 
the following limiting properties 

QI (a, 7, A, n) 	/C/ (a, A, n) 	F (n,n/ i3), 	 (14) 
.710 	 a,À-+co 

and their r-th order moments are given by E(Zr) = E(nr), where E(Z) is the r-th order moment of the 
corresponding amplitude random variable, which are given in Section 6. 

In this manner, every intensity return can be seen as a particular case of the outcome of a Gi(a,-y, A, n) 
distributed random variable. Figure 4 shows the three aforementioned cases, with the same parameters chosen 
for Figure 2 and n = 1. 
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Figure 4: Intensity returns: Gamma, intensity 1C and intensity G densities. 

In Yanasse et al. (1995) was presented the following recursive form for the cumulative distribution function 
for Ki distributed random variables, where [x]= max{k E IN: k < x + 1/2} 

22-01-02 
F z (x) = 1 1, 	(e OF (O 2)

g (v , k, z) 

where 

—zu+ 1 Ku+i(z) 	 if k = 1, 
g(v,k, z) = (k 1)(2v k — 1)g (v , k — 2, z) zP -E k K, 4_1(z) (k — 1)z -1 K(z) else, 

and (Bi = a,92 = [n]) or (0 2  = [a], 0 1  = n), v = 01 — 02, k = 202 — 1 and z = V0102ax/A. The reader 
is referred to the previously mentioned report for details about the use of this expression. The cumulative 
distribution function of KA random variables is given by Fz,(x) = Fz1 (x 2 ). The cumulative distribution 
function of F (a, )) distributed random variables (and, therefore, of N/F (a, À) ones) can be computed using 
standard numerical routines. The cumulative distribution function of G distributed random variables, to the 
present date and to the knowledge of the authors, only can be computed by the numerical integration of the 
corresponding density. 

8 NON-MULTIPLICATIVE DISTRIBUTIONS 

In some special cases (Yanasse et al., 1995), even under the multiplicative model, the normal distribution 
could model the intensity and amplitude returns. Those cases arise in the following situations: 

1. When the homogeneity is somewhere between the homogeneous and heterogeneous cases, and the number 
of looks is large enough (n —+ oo) to assume that the speckle is a constant equal to 1. The intensity 



backscatter, under these assumptions, has approximately a Ar(a/A, a/) 2 ) distribution and, therefore, the 

return has the same distribution. 

2. When there is complete homogeneity (and, therefore, the backscatter is a constant equal to 3) and the 
number of looks is large enough to assume that the speckle is Ar(1, 1/n) distributed. Under these hypothesis 
the intensity backscatter has approximately a A'(f3, ,3 2 /n) distribution. 

Distributions other than those arising from a formal application of the multiplicative model have also been 
successfully used in SAR image analysis. Some of them are commented here, and were used in the analysis 
reported in Yanasse et al. (1994). All these distributions are intended for the modelling of the intensity and 
amplitude returns (and, therefore, no subscript is used for the random variable Z), without any explicit attempt 

to decompose it in backscatter and speckle. 

The Log-Normal distribution is derived from V .AT(p, cr 2 ) and taking Z = exp(V). This case is denoted 

here as Z £N(/1, o-2 ), and its density is given by 

1 	( 1 (log(z) /) 2) 
h(z) = 	exp 

2 	cr 	
, 	p E IR, z, o-  >O. 

The random variable Z is said to have Beta distribution with parameters a, fl > O, denoted here as Z — 
B(a, j3) if its density is given by 

	

r(a 	_ 46-1 , 	z E (0,1). iz(z) = r(amm z  

Obviously, when this distribution is intended to model image data, the density support has to be extended from 
the minimum to the maximum possible values. 

The random variable Z is said to have Weibull distribution with parameters a, > O, denoted here as 

Z VV(a, fl) if its density is given by 

Íz(z) = afp za- i exp (—fiz« \ 

	

) 	z > O. 

Some works (Farina et al., 1987) report the use of a transformed Weibull random variable, namely if V — 

142(a, 13), then the data is modelled as Z = VP , with p > O. 

9 APPLICATIONS 

From the presented framework it can be deduced that, given a format and (if applicable) the equivalent 
number of looks, it is only necessary to estimate the parameters of the corresponding G distribution since 
these values indicate the degree of homogeneity of the observed area, as seen in relations (8), (11) and (14). 
Distributions that do not fit into the multiplicative model as, for instance, those presented in Section 8 do not 
possess this nice discriminatory capability based on parameters. 

As a first attempt to statistical discrimination of samples using the K distribution, in Yanasse et al. (1995) 
several samples from forest and non-forest were taken from a SAREX image over Tapajós, Brazil. This image 
is in amplitude format, and the equivalent number of looks was estimated as 5.6 (while the informed nominal 



value is 7). Those samples were resampled in order to have approximately independent observations. Same 
samples were taken from the HH and VV polarizations. 

The parameters of the square root of Gamma, amplitude K and Normal distributions were estimated for 
every sample, and the Kolmogorov-Smirnov test was applied to test the three hypothesis. The percentage of 
samples not rejected by this goodness-of-fit test at the 10% levei is presented in Table 1. This table shows 
that the 'CÁ distribution also provides a good fit for both types of areas; this result was expected since this 
distribution is more general than the ff distribution, in the sense that the latter is a limiting case of the former. 
It is important to notice that the parameters of the /CA distribution perform a discrimination between forest 
and non-forest samples. This discriminatory capability is shown in Fig. 5, where a clear distinction is drawn 
between forest and non-forest samples by as, the estimator of the parameter a of the /CA distribution. In this 
Figure it is noticeable that & 20 separates the two types of areas, suggesting that forest (non-forest) samples 
were generated by heterogeneous (homogeneous) backscatters since for these samples & < 20 (ã' > 20, resp.) 

Sample — Distribution 1,1f 1CA g 
Non-forest VV 87 87 - 100 
Non-forest IIII 100 97 100 

- Forest VV 88 - 	95 39 ' 
Forest IIII 92 88 38 

Table 1: PERCENTAGE OF SAMPLES ACCEPTED AT THE 10% SIGNIFICANCE LEVEL. 

It is also noticeable from Table 1 that the N distribution fails to fit forest areas, as previewed by the theory. 
Some of the non-multiplicative distributions mentioned in Section 8 were also used to describe those samples 
and, though the results are interesting, they fail to explain the samples in terms of their homogeneity. 
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Figure 5: Estimated parameters a and /3 of the /CA distribution for forest ("o") and non-forest ("+") samples. 

Two samples, one from non-forest (homogeneous area) and other from forest (heterogeneous area), from the 
VV polarization band were chosen to illustrate the adequacy of the presented technique. Figs. 6 and 7 show 
the histograms and fitted densities after parameters estimation of H , )CA and \TÊ distributions. 
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Figure 6: Histogram and fitted densities for a non-forest sample: normal (continuous), square root of Gamma 
(dot-dashed) and amplitude K (dotted lines, resp.) 

The use of G distributions poses a delicate problem, namely parameter estimation, since the mathematical 
difficulties are remarkable. Some effort is being devoted to finding computationally suitable estimators for the 
parameters that characterize these distributions. 

10 CONCLUSIONS AND EXTENSIONS 

A unified use of the multiplicative model was presented to derive some useful distributions for SAR image 
modelling and analysis, for several degrees of heterogeneity and three usual image formats. Many relationships 
relating these distributions are presented. The cumulative distribution functions of multilook K distributed 
random variables was provided in a recursive form, that requires the discretization of one of its three parameters. 
An extension of the "classic" distributions that arise within the multiplicative model is achieved through the 
use of the square root of generalized inverse Gaussian distribution for the amplitude backscatter, giving rise to 
the class of G distributions for the return. The estimation of the parameter a of K distributions was seen as a 
good discriminatory technique. 

Multivariate distributions could also be considered to exploit the maximum of information from polarimetric 
data. It is interesting to note that the generalized hyperbolic distribution (Barndoff-Nielsen and Blaesild, 1981) 
is defined for an arbitrary number of dimensions, and so is the Gc distribution. Efficient estimation techniques 
for G distributions is an open problem. 

The knowledge of the statistical properties of SAR data allows the proposal of specialized processing/segmen-
tation/classification techniques, better suited for dealing with the speckle noise than those used for optical data. 
For instance, in Frery and Sant'Anna (1993) some specialized filters are proposed for the Rayleigh distribution, 
which is the adequate model for homogeneous areas, amplitude detection and one look. Those robusi filters 
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Figure 7: Histogram and fitted densities for a forest sample: normal (continuous), square root of Gamma 
(dot-dashed) and amplitude K (dotted lines, resp.) 

produce a remarkable speckle noise reduction, while preserving edges and sharp features, and could be extended 
to other formats and heterogeneity cases. 
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