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Lacunarity as a texture measure for SAR imagery 
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Abstract. Lacunarity analysis is a simple technique for characterizing texture in 
binary images. Lacunarity quantifies deviation from translational invariance by 
describing the distribution of gaps within the image at multiple scales: the more 
lacunar an image, the more heterogeneous the spatial arrangement of gaps. For 
grey-level data, a series of binary images are formed through slicing the image 
histogram by quantiles. Characteristic decays of lacunarity as a function of 
window size permit scene object texture to be distinguished from speckle. Using a 
series of ERS-1 SAR images of the Brazilian Pantanal, we demonstrate how 
lacunarity functions can link image phenomenology with scene dynamics. 

1. Introduction 
The use of Synthetic Aperture Radar (SAR) imagery for environmental monitor-

ing will increase during the decade as data from spaceborne platforms (ERS-1 and 2, 
Fuyo-1, Radarsat) become more readily available. Scene models (sensu Strahler et al. 
1986) for radar remote sensing have focused primarily on descriptions of backscat-
tering from static scene objects (e.g., Ulaby et al. 1990, Karam et al. 1992). The 
dynamic nature of environmental monitoring, however, necessitates the develop-

lment of spatio-temporal scene models that describe image phenomenology and 
permit linkages to dther dataforms, e.g., GIS, simulation models, optical imagery 
(Henebry 1993). 

Texture analysis provides a first step toward developing dynamic scene models. 
Several studies have investigated the efficacy of texture measures in SAR image 
segmentation and classification using either autocorrelation/autocovariance formu-
lae derived from simple phenomenological models of backscattering (e.g., Sheen and 
Johnston 1992; Rignot and Kwok 1993) or measures based on the Grey Leve! Co-
occurrence Matrix (GLCM) (e.g., Ulaby et al. 1986, Barber and LeDrew 1991). The 
GLCM describes probabilities of the co-occurrence of two specific grey-levels given 
specific pixel locations in terms of relative direction and distance (Haralick and 
Shapiro 1992). Both approaches describe texture in terms of (dis)similarity based on 
spatial proximity (lag-neighbourhood) but they do not include an explicit consider-
ation of scaling effects on spatial pattern. Further, GLCM measures do not explicitly 
address speckle noise, thus biasing estimates of scene texture. 

We demonstrate a simple multi-scale technique, lacunarity analysis, that can 
distinguish between speckle-dominated texture and intrinsic scene texture. More 
significantly, lacunarity is a straightforward metric that facilitates the connection 
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between image phenomenology and scene dynamics. We demonstrate the technique 
on multi-temporal SAR imagery of the Pantanal, the largest wetland ecosystem on 
the planet. 

2. Methods 
2.1. Lacunarity as a texture measure 

Lacunarity describes the complex intermingling of the shape and distribution of 
gaps within a binary image: a highly lacunar image exhibits gaps distributed across a 
broad range of sizes (Mandelbrot 1983, Plotnick et al. 1993). Laçunarity is an aspect 
of fractal geometry: lacunarity (L) is the multiplicative prefactor in the general 
power-law formula of which the fractal dimension is the exponent, F(x)=Lx(1') . As 
a texture measure, lacunarity quantifies the deviation of a geometric object (e.g., 
shape, pattern, fractal) from translational invariance, an aspect of spatial stationar-
ity (Plotnick et al. 1993). A simple estimate of lacunarity, the index A(w), is the ratio 
of the variance of weighted number of occupied sites at observation window size w 
to the square of the mean weighted number of sites plus 1: 

A(w) = 1 + var(w)Imean 2(w) 	 (1) 

The maximum value of A(w) occurs when the window size equals the spatial 
resolution of the image; it then equals the inverse of the proportion of occupied 
pixels. Conversely, the minimum value = 1) occurs when the observation window 
equals the image size, i.e., when the variance is zero. 

Calculating the lacunarity index across a series of window sizes and plotting the 
logarithm of the index against the logarithm of the window size, the resulting 
lacunarity function illustrates the scale-dependency of spatial nonstationarity. The 
decay pattern of the lacunarity function contains significant information about the 
spatial structure of the binary image (Plotnick et al. 1993). A spatially random image 
exhibits a swift decay to the minimum value. An image with self-similarity across 
some range of scales exhibits a linear decay, the slope of which is an estimate of the 
fractal dimension of the pattern within that range. For an image with an arrange-
ment of objects at a particular scale, the lacunarity decay is slow until the window 
size exceeds the scale of the objects and is rapid thereafter. By varying window shape 
as well as size, lacunarity functions can also identify departures from another aspect 
of spatial stationarity: rotational invariance or isotropy. 

2.2. Study site 
The Pantanal is the largest wetland habitat on the planet: an immense alluvial 

plain formed during the Holocene, it covers 139 000 km' in Brazilian states of Mato 
Grosso and Mato Grosso do Sul and extends into Bolivia and Paraguay (Rizzini et 
al. 1988). The Pantanal is also one of the more radiometrically dynamic landscapes 
on the planet due to extensive seasonal flooding by the Rio Paraguai and its 
tributaries and by intra-basin precipitation. An ecotonal landscape, the Pantanal is a 
complex mosaic of shallow lakes, periodically inundated grasslands, and islands and 
elevated corridors of forest, which together supportd'an abundant and diverse fauna 
of birds, fish, reptiles, and mammals, including a few million head of cattle (Alho et 
ai. 1988). 

For this study we used ERS-1 images of the Nhecolândia region of the Pantanal 
(Table 1). This arca comprises the southern tier of the vast ( 50 000 km') alluvial 
fan associated with the Rio Taquari and is characterized by hundreds of shallow 
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Table 1. Acquisition data for ERS-1 SAR images. 

GMT 	Lat./Long. of image centre 
Date 	 (hh:mm:ss) 	 (ddd:mm:ss) 	Orbit/Frame 

12 December, 1992 	13:50:14 	S19:12:04/E304:02:06 	7369/210 
20 February, 1993 	13:50:23 • 	S19:12:40/E304:01:26 	8371/210 
1 May, 1993 	 13:50:12 	S19:15:00/E304:01:19 	9373/210 

lakes, both freshwater (baías) and brackish (salinas). The December image represents 
the drier phase of the region's annual flooding cycle: lakes and islands, beaches and 
corridors are distinct. By February flooding had commenced but Was not yet 
generalized: previously sharp edges are blurred. The May image represents the 
flooding peak: only the salinas retain a low backscattering; areas of inundation 
exhibit radiometric changes due to widespread growth of aquatic macrophytes and 
perennial grasses that emerged in the freshwater. 

2.3. Image registration, binary image formation, and lacunarity cakulation 
We used georeferenced, ground-range projected, real-valued, 3-look SAR digital 

imagery processed by the INPE. The nominal ground resolution of these data were 
25 m with a pixel spacing of 12-5 m in both range and azimuth. A 1024 une by 1024 
pixel subimage was extracted from the central region of each image. The February 
and May data were registered to the December image with the Khoros warpimage 
program, which uses a least-squares fit of tiepoints to produce four reference points 
followed by a quadratic polynomial fit and bilinear interpolation (The Khoros 
Group, 1991). Keying on persistent lake features and islands, 28 and 15 tiepoints 
were used for February and May images, respectively. The resulting images were 
cropped to yield a common 590-24 km' area (992 lines by 952 pixels) for analysis. 

For each image, the quartiles of the frequency distribution (Q1, Q2, Q3, Q4) 
were calculated and four binary imases were formed by threshold filtering (figure 1). 
Lacunarity was estimated using square windows ranging from 1 to 32 pixels (25 m to 
800 m) with 1000 random samples at each size. The lacunarity index was calculated 
at each window size by, 1, tabulating the frequency of occupied pixels per sample 
into size classes, 2, normalizing the frequency counts by sample number to yield size 
class probabilities, 3, weighting each size class probability by multiplying by its 
respective number of occupied pixels, 4, calculating the mean and variance of the 
weighted probability distribution, and 5, calculating the index using (1). 

3. Results 
Comparison of lacunarity functions across the quartiles of a single image reveals 

that more spatial structure, in terms of the scale-dependency of translational 
invariance, is found in the tails of the image histogram (i.e., Q1 and Q4) than in the 
middle 50 per cent (figure 2). The smoother, more rapid decays of the Q2 and Q3 
lacunarity functions contrast with the structured slower decays of Q1 and Q4. 

Quartile-specific lacunarity functions exhibit temporal shifts in decay pattern. 
The Q1 lacunarity function is most strongly affected (figure 2 (a)). The slow decays 
of December and February indicate large patches ( > 64 ha) of comparable backscat-
tering objects. In contrast, the swift quasi-linear decay of May suggests spatial self- 



568 	 G. M. Henebry and H. J. H. Kux 

(a) 
	

(b) 

(c) 
	

(d) 

Figure 1. Binary images formed by the 12 December, 1992 ERS-1 SAR image from the 
Nhecolândia region of the Pantanal, Brazil: (a) first quartile (Q1), (b) second quartile 
(Q2), (c) third quartile (Q3), and (d) fourth quartile (Q4). 

similarity in the distribution of backscattering patches between 0.25 and 6.25 ha. 
Temporal changes in lacunarity for the other quartiles are less pronounced but a 
pattern of decreasing lacunarity (increasing translational invariance) from December 
to May is evident (figure 2 (b,c,d)). 

4. Discussion 	 • 

The temporal shifts observed in the lacunarity functions can be understood in 
terms of changes of spatial structure and scattering geometry in the scene being 
imaged. The Q1 binary image (figure 1 (a)) captures the spatial arrangement of those 
scene objects with low radar backscattering, predominantly arcas of open water. The 
dramatic shift of the Q1 lacunarity function (figure 2 (a)) arises from a fundamental 
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Figure 2. Lacunarity functions by quartile for images at three successive dates representing 
progressively higher water leveis within the scene: (a) Ql, (b) Q2, (c) Q3, and (d) Q4. 
Square with solid une is 12 December, 1992. Cross with dashed une is 20 February 
1993. Diamond with dotted une is 1 May, 1993. 

change in the scene. By May the baías h'ave significant canopies of emergent aquatic 
macrophytes and perennial grasses that increase the surface roughness and blur once 
sharp transitions from open water to sandy beaches with sparse vegetation and 
forested ridges. 

Three arrangements are evident in the December Q2 image (figure 1 (b)): 1. linear 
features corresponding to borders along open water; 2. large but diffuse clusters 
representing wetter vegetated areas; and 3. low-valued speckle noise randomly 
distributed through areas of dense woody vegetation. In contrast, the consistently 
rapid decays for Q2 (figure 2 (b)) suggest a spatially near-random landscape that 
becomes more homogenized through time. The Q2 scene is indeed dominated 
spatially by speckle. linear features are not well detected by a square window and 
diffuse clusters are ill-represented by method's density counting. 

Only two features are evident in the December Q3 image (figure 1 (c)): continu-
ous patches of wetter regions (black) and speckle noise within areas of high 
aboveground biomass (diffuse white). The Q3 lacunarity functions (figure 2 (c)) for 
December and February exhibit comparable decays with initial self-similarity 
shifting to an almost constant non-zero levei. The May decay rapidly leveis off near 
zero indicating a homogeneously random pattern of Q3 backscatterers in response 
to inundation. 
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The Q4 binary image contains the pixels exhibiting the highest degree of 
backscattering within the scene, such as those associated with the forested corridors 
and islands. The December Q4 image (figure 1 (d)), although similar to Q3, shows 
denser clustering and more definition along edges. In terms of scene dynamics, 
higher water leveis change the scattering geometry at the edges of the corridors: the 
surface-volume scattering component is strongly affected as the dry vegetated 
bórders are inundated. A blurring of edges affects only local geometry; the spatial 
articulation of the main corridors remains unaffected. However, from previously 
open water can emerge vigorous stands of grasses and aquatic vegetation, shifting 
areas dominated by Q1 pixels in the December image to Q4 in the May image. The 
lacunarity index at smaller window sizes measures local heterogeneity and thus 
should be more sensitive to change in edges; whereas the slope, which measures the 
articulation of spatial structures across the scene, should remam n relatively unaf-
fected. Accordingly, the Q4 lacunarity function shows less change in srope than in 
values at smaller window sizes (figure 2 (d)). 

5. Conclusions 
Lacunarity as a texture measure for. SAR imagery offers several advantages. 

First, it is a multi-scale technique: dependence of texture on scale of observation can 
be identified. Second, the decay of the lacunarity index as a function of window size 
follows characteristic patterns for random, self-similar, and structured spatial 
arrangements. This feature is especially useful in distinguishing the textural effects of 
speckle from scene texture. Third, we have demonstrated how lacunarity functions 
can provide a framework for linking differences in image sequences to changes in 
scene structure. Lacunarity analysis shows great promise for interpretation and 
analysis of SAR imagery. 
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