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Abstract. Raster representations of thematic and numerical spatial attributes are very common in a GIS environment
for  computational simulation and analysis of  spatial processes. This paper addresses the problem of predictions with
uncertainty assessment for GIS raster representations created from a set of sample points of spatial attributes. The
realizations of a stochastic simulation process, over numerical attribute samples, are used for inferencing the attribute
values and the related uncertainties at non-sampled spatial locations. A case study, using elevation sample data, is
presented in order to illustrate the used methodology with real data.

1. INTRODUCTION

GIS environment allows one to simulate and analyze
different scenarios that can be used to support
decisions made about a specific real spatial process. The
main idea is to integrate representations of spatial
attributes in order to analyze simulated spatial processes
in a computational environment. The resulting scenarios
will depend on the data representations and
manipulations and, also, on the mathematical models
used to integrate them. Raster representations of
thematic and numerical spatial attributes are frequently
used in a GIS environment for computational simulation
and analysis of spatial processes. Raster representations
of spatial attributes are derived from a set of attribute
samples, commonly observed as sample points over a
spatial region of interest. Nonlinear stochastic
simulation procedures, based on the indicator kriging
approach, can be used to create raster representations of
spatial attributes. The realizations of the stochastic
simulation inference process, over numerical attribute
samples, are used in order to infer attribute values along
with inference uncertainties at non-sampled spatial
locations. The uncertainty of each representation can be
propagated to the resulting scenarios of the
computational spatial modeling (Heuvelink, 1998). The
resulting uncertainties will qualify the scenarios, or the
objects presented in the  scenarios, yielding a
quantitative information of the risk assumed for an
adopted scenario. In this context, this work explores a
methodology to create raster representations of
numerical attributes, from a set of sample points, using a
nonlinear stochastic approach called indicator
sequential simulation. Furthermore, this work shows
how to assess uncertainty values related to the attribute
inferences obtained by this methodology. Different
uncertainty metrics, based on confidence intervals, is
addressed. A case study for an elevation sample set is

presented in order to illustrate the use of the
methodology applied to real data. Also, uncertainty
metrics will be applied to the data realizations in order to
qualify the elevation inferences

2. THE GEOSTATISTICAL PARADIGM FOR
ATTRIBUTE INFERENCES WITH UNCERTAINTY
ASSESSMENT

From a geostatistical point of view, the distribution of a
spatial attribute in a region A ⊂ ℜ2 of the earth surface is
represented as a random function Z(u). For each position
u ∈ A the attribute is considered as a random variable
(RV) that can assume different values depending on the
model of  the spatial distribution of z(u), i. e., depending
on its probability distribution function (pdf). The
conditional cumulative distribution function (ccdf) of a
continuous RV Z(u), conditioned to (n) sample points
z(uα), α =1,2,...,n, can be denoted as

A random function (RF) is a set of RVs defined over
some field of interest. A RF Z(u) is characterized by a set

of all its K-variate ccdfs and its multivariate ccdf is
defined as:

From the ccdf one can derive different optimal estimates
for any unsampled value z(u) in addition to the ccdf

mean, which is the least-squares error estimate (Deutsch,
1998). Also, the univariate ccdf of a RV is used to model
uncertainty about the value z(u) while the multivariate
ccdf is used to model joint uncertainty about K values
z(u1),...,z(uk). Therefore, it is possible to derive various
probability intervals that can be used as uncertainty
metrics. These derivation processes will be addressed in
the next sections.
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3. THE CCDF DETERMINATION

The ccdf of a numerical RV, or of a numerical RF, can be
obtained parametrically or non-parametrically. In the
parametrical approach, the ccdf is determined by a
limited set of statistical parameters. For example, the
Gaussian ccdf is fully determined by two parameters, the
mean and the variance of the distribution. Unfortunately
it is a hard work to find out whether the distribution of a
continuous attribute can be modeled by parametric ccdf
or not. Non-parametrical distributions are more common
for spatial attributes and can be estimated using the
indicator kriging approach that will be explained in the
next section.

4. THE CCDF APPROXIMATION USING THE
INDICATOR KRIGING APPROACH

Instead of the variable Z(u), consider its binary indicator
transformation I(u;zk) defined as:

The expectation E{ I(u;zk)|(n) } yields an estimation F*

for the ccdf of Z(u) at the cutoff value zk  and
conditioned to the n sample data (Deutsch, 1998), i. e.:

Using a linear kriging approach, as simple or ordinary

kriging (Camargo, 1997), to evaluate the expectation E
defined in the above equation, the indicator kriging of a
continuous variable aims to provide a least-squares

estimate of the ccdf at cutoff zk. A set of ccdf estimates
in various cutoffs can lead to an approximation of the
full ccdf of Z(u).  Some corrections for the follow order
relation deviations:

and

must be performed to guarantee that the ccdf
estimations are between 0 and 1 and increase

monotonically. Figure 1 illustrates the fitting process of

the ccdf estimation using 5 cutoff values.

5. THE INDICATOR SIMULATION APPROACH

Stochastic simulation, hereafter called simulation for
simplicity, is the process of drawing l alternative,
l=1,...,L,, equally probable, joint realizations of the
component RVs from an RF model (Deutsch, 1998).  Each
realization of Z(u) is denoted by z(l)(u). A conditional
simulation is the simulation conditioned to a set of n
sample data. In this case the resulting realizations honor

the sample data values at their uα spatial locations, i. e.,
z(l)(uα) = z(uα), ∀ l.

Figure 1: The ccdf estimation using indicator kriging
approach with order relation corrections

Deutsch, 1998, presents a sequential indicator simulation
approach that uses local ccdf approximation, determined
by the indicator kriging approach, in order to obtain
realizations of RVs Z(u). For creating a raster
representation, a univariate ccdf is modeled at each node
of the all grid nodes visited along a random sequence.
To ensure reproduction of the z-covariance model, each
univariate ccdf is made conditional not only to the
sample data but also to all simulated values at
previously visited locations (Goovaerts, 1997).

The realizations are drawn using probability values,
obtained from an uniform random model, that are
mapped to z values taking into account the estimate

univariate ccdf for each node location (Felgueiras, 1999).
Figure 2 illustrates this process.

Figure 2: Process of obtaining a realization from  a
estimated univariate ccdf
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6. EVALUATION OF STATISTICAL PARAMETERS
FROM THE REALIZATIONS

The set of realizations at a node location u can be used
to determine a ccdf, along with its parameters, of a RV
Z(u).

The most popular predictive ccdf parameter is the mean
value µ. From a set of L realizations the mean value of a
ccdf is evaluated as the average of all the realizations.
The variance σ2 and the standard deviation σ are easily
evaluated using the realization values and the mean
value.

The median value, q.5, can be determined splitting the set
of realization into 2 subsets, each with equal number of
elements. Also, the set of realizations can be split in
more equal subsets to derive different quantile values.
When the median and the mean values are closer the
distribution can be considered symmetric The median is
a more robust estimator for non-symmetrical
distributions (Isaaks, 1989).

7. UNCERTAINTY ASSESSMENT FOR LOCAL
ESTIMATES

As already emphasized,  in section 2, the univariate ccdf
of a RV is used to model uncertainty about the value z(u)
while the multivariate ccdf is used to model joint
uncertainty about K values z(u1),...,z(uk). Therefore,
given a ccdf model it is possible to derive various
probability intervals that can be used as uncertainty
metrics.

For numerical attributes usually the uncertainties are
expressed as confidence intervals. When the ccdf of a
RV Z(u) presents a high degree of symmetry  and the
normality of the distribution can be assumed, the
estimated value z*(u), typically the mean value µ, and
the standard deviation σ are combined to derive
Gaussian-type confidence intervals, centered on µZ(u),
such as:

where σ2(u)=E{(Z(u)–E{Z(u)})2}.

For non-symmetrical distributions one can derive
probability intervals based on quantiles of the ccdf. For
example, the 95% interval [q0.025;q0.975] is taken as:

with q0.025 and q0.975 being the 0.025 and 0.975 quantiles
of the ccdf, i. e., F*(u; q0.025|(n)) = 0.025 and F*(u;
q0.975|(n)) = 0.975

8. A CASE STUDY FOR ELEVATION DATA

In order to illustrate the concepts presented above, the
following case study uses a set of elevation data
sampled in the region of an experimental farm called
Canchim. The study region is located in the city of São
Carlos, SP, Brazil, and cover an area of 2660 ha between
the north-south coordinates from s 21o55’00’’ to s
21o59’00’’  and  the  east-west  coordinates  from w
47o48’00’’ to w 41o52’00’’.

The data set consists of 662 elevation samples
distributed in the Canchim region. Some statistic values
of this sample set is shown in the Table 1.

Table 1: Univariate statistics of the elevation sample set
of the Canchim region

Statistic Value

 Number of Samples 662

 Mean Value 800.596

 Variance 4481.662

 Standard Deviation 66.945

 Coefficient of Variation 0.084

 Coefficient of Skewness -0.296

 Coefficient of kurtosis 1.562

 Minimum Value 687.000

 Lower Quartile 732.500

 Median 827.000

 Upper Quartile 859.500

 Maximum Value 911.000

The histogram graph, presented in the Figure 3, shows
the distribution of the elevation sample set compared
with a normal curve distribution. It can be seen that the
sample data distribution approximates a bimodal
behavior and differs considerably from the Gaussian
(normal) or symmetrical distribution.

Figure 3:  Histogram of the elevation sample set
emphasizing the non-normal and non-symmetrical

behavior of the distribution
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The spatial distribution of the elevation sample set in the
Canchim region is illustrated in the Figure 4

Figure 4:  Distribution of the elevation data set
observed in the Canchim region.

The original sample set was split in 10 equal subsets
(deciles) using 9 cutoff elevation values. Each cutoff
value was considered in order to create indicator
subsets using the indicator transformation explained in
section 4. The variability of the indicator subsets are
analyzed allowing the definition of an experimental and a
theoretical variogram model for each subset. These tasks
were performed using the geostatistical module of the
SPRING GIS version 3.5 (SPRING V.3.5, 2001).

The variogram models, along with the original sample
set, were used to set the parameter values of the gslib
(Deutsch, 1998) sequential simulation program named
sisim. This program was modified and used for
estimating 400 realizations of 200 rows by 200 columns
elevation grids (rectangular regular grids). Considering
the 400 elevation realizations at any grid location u it
was possible to render the mean µ and the median value
q.5 maps using the methodologies defined in section 6.
These maps are shown in the Figures 5 and 6. A
qualitative (visual) comparative analysis of the two maps
shows that they differs. This is explained by the non-
symmetrical distribution of the elevation distribution
model. Because of these, the median map can be
considered  more representative as central measure for
this attribute in the region considered.

Figure 5: Elevation grid map of local mean values
estimated from the 400 grid realizations

Figure 6: Elevation grid map of local median values
estimated from the 400 grid realizations

The Figures 7, 8 and 9 show uncertainty maps rendered
using also the 400 elevation realizations and the
confidence interval methodologies as explained in the
section 7.
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It can be seen that all the uncertainty map values are
related to the attribute behavior. These uncertainty maps
present maximum uncertainty values on regions (whiter
regions) where the attribute values behave more
erratically. Minimum uncertainty values (blacker regions)
appear where attribute values vary smoothly.

The map of Figure 7 shows uncertainty values based on
Gaussian-type confidence intervals. This map was
generated using one standard deviation centered in the
mean value (Prob{Z(u) ∈ (µ ± σ)}≅0.68). It is common to
use this map as the uncertainty map related to the map
estimated by mean values (Figure 5). A care has to be
taken on using this type of uncertainty representation. It
must be used only when the attribute variation can be
modeled as  RV with symetric-distributions (normal one,
for example).

The maps of Figures 8 and 9 represent uncertainties as
confidence intervals based on quantiles. The map of
Figure 8 was obtained using interquartile confidence
intervals (Prob{Z(u) ∈ [q0.25;q0.75]} = 0.5) while the map
of Figure 9 was generated with interdecile confidence
intervals (Prob{Z(u) ∈ [q0.10;q0.90]} = 0.8 ).

Figure 7: Map of local uncertainties  based on
Gaussian-type confidence intervals (Prob{Z(u) ∈ (µ ±

σ)}≅0.68)

Figure 8: Map of local uncertainties based in the
interquartile confidence intervals (Prob{Z(u) ∈

[q0.25;q0.75]} = 0.5)

Figure 9: Map of local uncertainties based on
interdecile confidence intervals (Prob{Z(u) ∈

[q0.10;q0.90]} = 0.8)

As expected the map of Figure 9 contains larger
uncertainty values than the one of Figure 8. The
decision about which one to use depends on the
accuracy demanded by an application. Finally the
interquantile uncertainty maps are more appropriated to
be used when the RV distributions can not be proven to
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have symmetrical behavior, as for the elevation attribute
considered in this work.

9. CONCLUSIONS

The concepts and results presented in this work show
that the  indicator simulation methodology is an
interesting option to be considered when estimates with
uncertainty assessments for numerical spatial attributes
are required. The use of indicator simulation approach
presents the following advantages:

• the indicator approach is non-parametric, so, it can
be used independently of the attribute distribution
model;

• the indicator approach allows assessment of
uncertainties related to the attribute variability
using the fitted local attribute distribution models;

• the sequential indicator algorithm determines the
univariate ccdfs taking into account the attribute
values of the sample data set and all the previously
simulated values. This ensure reproduction of the z-
covariance model, better representing the attribute
variability;

• the various equally probable outcome realizations of
the indicator simulation can be used as input for
complex spatial modeling (with multi-layer analysis)
performed by Monte Carlo simulation method, for
example. Also, the outcomes of the spatial analysis
results can be used to define their ccdf´s and,
therefore, modeling their local uncertainties.

• Finally, it can be emphasized that the indicator
simulation  methodology can be applied, also, to
thematic attributes with minor modifications. This
has been the subject of researches that will be
reported in the near future.
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