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ABSTRACT 
 
The annual and interannual variability of regional rainfall produced by the 
CPTEC/COLA Atmospheric global climate model are studied here.  The evaluation is 
made for a 9-member ensemble run of the model forced by observed global sea surface 
temperature (SST) anomalies for the 10-year period 1982-1991.  The Brier skill score, 
Relative Operational Characteristic (ROC) and tercile categories are used to assess the 
predictability of rainfall and to validate rainfall simulations, in several regions around the 
planet. In general, the annual cycle of precipitation is well simulated by the model for 
several continental and oceanic regions in the tropics and mid latitudes.  Interannual 
variability of rainfall during the peak rainy season is realistically simulated in Northeast 
Brazil, Amazonia, central Chile, and southern Argentina-Uruguay, Eastern Africa, and 
tropical Pacific regions, where it shows good skill.  Some regions, such as Northwest 
Peru-Ecuador, and southern Brazil exhibit a realistic simulation of rainfall anomalies 
associated with extreme El Niño warming conditions, while in years with neutral or La 
Nina conditions, the agreement between observed and simulated rainfall anomalies is not 
always present.   

 
1. Introduction  

Because of the presence of non-linear processes in the climate system, 
deterministic projections of change are potentially subject to uncertainties arising from 
sensitivity to initial conditions or to parameter settings.  Such uncertainties can be 
partially quantified from ensembles of runs from the same model (with slightly different 
initial condition for each ensemble member) or from ensembles of integrations from 
different climate models.  In order to be able to make reliable forecasts of weather and 
climate in the presence of both initial conditions and model uncertainty, it is now 
becoming common to repeat the prediction many times from different perturbed initial 
states (Mason et al. 1999, Kumar et al. 2001).  Based on the dispersion of the ensemble 
members (“inter-member spread”) it is possible to establish confidence thresholds on the 
seasonal forecast and to determine the skill of the model at seasonal and interannual 
scales. For a number of predefined regions, inter-member spread may bear a relation to 
the accuracy of the prediction, and a climate signal in a regional prediction should appear 
as a discernible shift on the forecast distribution relative to the climatological 
distribution. The present study focuses on the validation of regional mean interannual 
variability of rainfall from an ensemble of 9 simulations of the atmospheric model of the 
CPTEC/COLA AGCM, forced with observed SST during a 10 year period (1982-91) 
(Cavalcanti et al. 2001).     

 
2. Background 

Seasonal and interannual climate variability comprise two components: (a) the 
externally forced component, which is the response to slowly varying external boundary 
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forcing (SST, sea ice, albedo, soil moisture, and snow coverage) and radiative forcing 
(greenhouse gases and aerosol concentration); (b) the internally forced component, which 
is the atmospheric variability induced by internal dynamics and the weather noise 
(Brankovic et al. 1994, Koster et al. 2000). The externally forced component is 
potentially predictable at long-range assuming the forcings themselves are potentially 
predictable (Goddard et al. 2001).  However, even if the SST anomalies could be 
predicted with no error, the associated atmospheric evolution could not be determined 
accurately due to the chaotic nature of the atmosphere.  The internally forced component 
may be potentially predictable up to about two weeks.  Even though a model can 
reproduce well the observed mean climate as an important and useful aspect of its 
performance, it is important to know its skill in reproducing the interannual variability at 
regional or global scales and to understand if the variability is externally forced (e.g. by 
SST) or if it results from internal dynamics with its characteristic chaotic behavior 

Predictability of climate at seasonal-to-interannual time scales at both global and 
regional scale must include an analysis of sources of predictability (boundary conditions 
versus initial conditions, as well as sea surface versus land surface boundary conditions), 
the ENSO induced-predictability, as well as the ENSO induced-teleconnections and the 
influence of other ocean basins such as the Atlantic and Indian Oceans (Goddard et al. 
2001).  Much of the skill in predicting departures from normal seasonal totals or 
averages, often associated with atmospheric circulation patterns, has its origin in the 
slowly changing conditions at the earth’s surface that can influence the climate. The most 
important surface condition affecting climate is the SST, and particularly the SST in the 
tropical zones. Other, usually less influential, surface conditions is soil wetness and snow 
cover.  Several studies have been devoted to simulations of the observed interannual 
variability of rainfall in several parts of the world, including regions where climate 
variability apparently is linked strongly to SST anomalies in tropical oceans besides the 
Pacific.  The physical links between tropical and extra tropical SST variability, and the 
sensitivity of seasonal climate to this external forcing have been previously documented 
(see reviews in Goddard et al. 2001). Rainfall at the Indian subcontinent correlates better 
to tropical Pacific variability than to local Indian Ocean variability (e.g. Weare 1979). 
Land surface characteristics and processes also serve as slowly varying boundary 
conditions on climate simulations.  Realistic representation of land surface-atmosphere 
interactions is essential to realistic simulation and prediction of continental scale climate 
and hydrology.  Experiments on changes in land-surface, such as regional and large scale 
deforestation in the Amazon basin (see reviews in Zeng et al. 1999, Costa and Foley 
2000) have identified the sensitivity of rainfall to changes in vegetation and soil moisture 
conditions in the region.  The role of interannual changes in snow coverage in the 
Himalayas on the onset and intensity of the Indian monsoon has been studied by 
Matsuyama and Matsuda (1993).  Goswami (1998) assessed the interannual variability of 
the Indian monsoon with focus on the internal and external forcing, and found that 
internal oscillations can account for a large part of the simulated monsoon variability.   
 In this paper, we present the highlights of the inter comparisons of the modeled and 
observed regional interannual variability of precipitation.  We examine the statistical 
patterns of rainfall fields for the 1982-91 and also determine the skill of the model for 
several regions in the tropics and mid-latitudes.  The inter-member spread is assumed as 
an indicator of model skill, and skill scores are calculated for several areas of the planet, 
with some of these regions known to be very sensitive to ENSO related warming in the 
tropical Pacific.  If the skill is high and the dispersion among members is low, it suggests 
that the SST-forced component for the simulated seasonal rainfall mean is realistic.  
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However, low skill and high dispersion may still be a realistic SST-forced response of 
seasonal rainfall if reliability is reasonable.    
 
3. The CPTEC/COLA AGCM: formulation and general climatology 

Starting in 1995, seasonal predictions have been carried out using the 
CPTEC/COLA AGCM.  This model is derived from the COLA AGCM (Kinter et al. 
1997).  The characteristics of formulation, physical parameterizations and the numerical 
aspects of the CPTEC/COLA AGCM are described in Satyamurti and Bittencourt (1999).  
The surface and upper-air climatology of the CPTEC COLA AGCM (Cavalcanti et al. 
2001) shows that the model is capable of simulating the general large-scale atmospheric 
features, and also providing a reliable simulation of the regional-scale seasonal climate 
variability in both tropics and mid-latitudes. The major convergence zones and rainfall 
centers in the tropical region, surface and upper-level circulation features, intensity and 
location of storm tracks, the teleconnection patterns such as the PNA (Pacific North 
American), and the components of the energy and moisture balances are realistically 
depicted by the model.  The ensemble approach used in this work is applied to validate 
the CPTEC/COLA AGCM against rainfall observations.  This allows for an identification 
of the portion of the anomalous climate signal due to the external forcing (SST) and the 
portion that is due to internal variability or chaos in the atmosphere.  Issues to be 
discussed include: (a) assessment of model’s ability to simulate and predict regional 
rainfall variability due to SST forcing, taking into account systematic bias and errors of 
the model in reproducing regional aspects of climate; and (b) probabilistic climate 
forecasts during some extreme situations, such as El Niño and La Niña.   

 
4. Experiment design, observational data sets and data processing, and 
assessment of skill of the model 

The simulation of interannual climate variability consists of an ensemble of 9 
integrations with different initial atmospheric conditions, for the period December 1982 
to December 1991.  Monthly-observed SST fields from the Climate Prediction 
Center/National Centers for Environmental Prediction (NCEP) Optimum Interpolated 
SST dataset are applied as forcing boundary conditions.  The spin-up time for 
adjustments of the climate conditions of soil moisture is two and a half months.  The 
model’s seasonal and annual climatology is defined as the mean of all ensemble members 
of the experiment. 
 To validate the model regional interannual variability of global and regional 
rainfall, derived from the Climate Prediction Center [CPC] Merged Analysis 
Precipitation (CMAP) data (Xie and Arkin 1998), was used for the observations.  The 
CMAP data set is constructed on the 2.5°x2.5° latitude/longitude grid and covers a 20-
year period from January 1979 to December 1998.  For the selected regions (Fig. 1), 
rainfall indices based on both model and observations were constructed for each region’s 
rainy season.  They are expressed as departures from the 1982-91 long-term mean and 
then normalized by the standard deviation.  The regions have been chosen for 
assessments of the annual cycle and interannual variability of simulated rainfall, as well 
as climate predictability and model skill, mainly because: (a) the dependence of rainfall 
variability of these regions to extreme SST forcing in tropical oceans, as documented in 
several studies and (b) the relatively low predictability in some regions (such as the 
monsoon regions) where the external forcing may be dominated by internal chaotic 
behavior of the climate system.   
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 The skill of the CPTEC/COLA AGCM is assessed using the Relative Operating 
Characteristic (ROC) method is also used for representing the quality of categorical 
forecast.  The ROC is a representation of the skill of a forecast system in which the hit 
rate and the false-alarm rate are compared.  A ROC “event” is defined here as the “above-
average”/”below-average”(i.e. 2-category).  When the forecast system has some skill, the 
hit rate exceeds the false-alarm rate; negative skill is indicated when the false-alarm rate 
exceeds the hit rate.  When there is no skill the hit and false-alarm rates are equal to the 
prior probability of warning being provided (Mason and Graham 1999).  
 
5. Regional rainfall characteristics and time variability  
5.1. Annual cycle of precipitation for several regions in the world 
 The behavior of the annual cycle of mean precipitation from the 9-member 
ensemble is discussed by analyzing regional patterns (Fig. 2).  The discussion also 
includes the standard deviation of interannual variability and the inter-member spread 
shown in Fig. 2.  However, it must be stressed that there is no reason why the dispersion 
and over- or under-estimation should be related. The model simulates quite well the 
annual cycle in several regions in the Americas, Indian subcontinent, Europe and tropical 
oceanic regions. In northern and southern Amazonia (Fig. 2a, b) the model 
underestimates rainfall during the January-May rainy season in contrast to the realistic 
depiction of the wintertime dry season.  In Northeast Brazil (Fig.  2c, d) and Southern 
Chile (Fig. 2k) the model tends to overestimate rainfall systematically through the year, 
with the annual cycle well depicted in both northern and southern Northeast Brazil. 
Actually, in North Northeast Brazil (Fig. 2c) there is an obvious shift in the timing, with a 
longer rainy season in the model. The transition season from wet to dry conditions, which 
can often play an important role in seasonal variability, is April-June in the observations 
but is June-September in the model.   
 In Northwest Peru (Fig. 2f) the model shows a large overestimation (up to 300%) 
during the summer-fall rainy season.  This overestimation in Northwest Peru and the 
underestimation in northern Amazonia may be connected through excess of convection 
(ascending motion) over Northwest South America and deficit of convection (descending 
motion) over Amazon region (direct thermal circulation). In Northwest Peru-Ecuador the 
annual cycle is stronger and in Amazonia weaker in the model than in CMAP data set.   
 In southern Brazil-Uruguay (Fig. 2e) the model underestimates the rainfall during 
January-September, and during the October-December rainy season the underestimation 
is of the order of the dispersion among members of the ensemble (1 STD).  In the South 
American monsoon area (Fig. 2g) the model simulates quite well the annual cycle of 
rainfall.  In Eastern Africa (Fig. 2h), the model reproduces realistically the double peak of 
the rainy season, even though the second peak is slightly overestimated.  In India (Fig. 
2i), the agreement between model and observations is remarkably good, in terms of 
amount and seasonal cycle; the dispersion among members is lower than in eastern 
Africa during the peak of the rainy season.  In Europe (Fig. 2n) the model depicts well 
the annual cycle with a systematic overestimation.  In the Pacific sector (Fig. 2l) the 
model overestimation of rainfall in the ITCZ contrasts with the underestimation of 
rainfall during the peak season in Indonesia (Fig. 2j).   
  
5.2. Interannual variability of precipitation for several regions in the world 
 Precipitation normalized departures from 1982 to 1991 in the rainy season of the 
analyzed regions are displayed in Fig. 3.  For Northern Amazonia (Fig. 3a), the scatter 
among members of the ensemble is larger than 1 STD (interannual STD), and the model 
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and observations show the large negative rainfall departures due to ENSO 1982/1983 and 
1986/1987. .  The model produced wetter than normal rainy season in 1988 that is not 
depicted by the CMAP rainfall observations in northern Amazonia, while the model 
captures the positive rainfall departures in southern Amazonia (Fig. 3b).  The dispersion 
among members of the ensemble for the FMAM peak in Northeast Brazil Amazonia 
(~1.5 STD in Fig 3c, d)) is not as large as in the Amazon, southern Brazil-Uruguay (Fig. 
3e), or the South American monsoon region (Fig. 3g), where the scatter can reach more 
than 2 STD.  In southern Brazil-Uruguay, despite this large dispersion, the model 
captures quite well the observed interannual variability, especially the more than normal 
observed rainfall in 1983 and the drought conditions in 1989.  In Northwest Peru-
Ecuador (Fig. 3f) the model reproduces quite well the large positive rainfall departures 
during the intense El Niño 1983 and 1987. Of all the regions in the Americas, Northeast 
Brazil (Fig. 3c, d) exhibits the best agreement between observed and modeled rainfall 
during the peak season over both the northern or southern sections. In particular, the 
positive rainfall departures during the La Niña events in 1985 and 1989 and the large 
negative rainfall departures during the El Niño events in 1983 and 1987 are well depicted 
by the model.    
 In Africa, the best depiction of the interannual rainfall variability belongs to 
Eastern Africa (Fig. 3h), especially for the extreme rainfall departures of 1984, 1985, 
1987.1988 and 1990.  In the Indian region, there is large spread among members (Fig. 
3i), and the modeled rainfall has similar variability to the observations in 1986, 1988 and 
1991. In the Pacific sector, interannual variability of rainfall along the Pacific ITCZ (Fig. 
3l) is nicely depicted by the model, while along the SPCZ and the regions nearby the 
western Pacific the scatter among members is as high as 3 STD.  In Indonesia (Fig 3j), 
the observed and modeled interannual variability does not coincide, and the model 
dispersion reaches up to 2 STD.    
 Based on discussions in Sections 5.1 and 5.2 we conclude that the CPTEC/COLA 
AGCM gives the phase of the annual cycle of precipitation reasonably well in area 
averages for tropical and subtropical South America, the North American monsoon area, 
and Africa.  And in regions such as Amazonia, Northeast Brazil and along the Pacific 
ITCZ, the model reproduces the interannual variability of rainfall, showing in some of 
them the impacts of strong warming or cooling in the equatorial Pacific associated with 
ENSO, such as in 1983 and 1987 El Niño and 1985 and 1989 La Niña For regions where 
the modeled and observed interannual variability are very different, feedbacks that go 
beyond the SST external forcing may be more important, and this seems to be the case of 
the Indian monsoon region as explained by Goswami (1998). 
 As indicated The CPTEC/COLA AGCM consistently underestimates precipitation 
during the peak season in equatorial regions, with a relatively low spread among 
members during the whole year, and reproducing realistically the annual cycle of rainfall.  
The systematic underestimation of rainfall and convection in regions such as northern 
Amazonia or tropical western Africa is consistent with a systematic error in the location 
and intensity of the upper-tropospheric Bolivian High and on the convergence of the 
Atlantic trade winds.  In compensation, the model generates overestimations of rainfall 
over northeast Brazil, eastern Amazonia, along the SACZ, and the Panama-Colombia 
coast.  This underestimation of rainfall has also been observed in other tropical wet 
regions, such as western Africa and Indonesia-West Pacific, especially at the height of 
the rainy season and has been linked to some deficiencies on the Kuo’s convection 
scheme  
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 In summary, over some regions, such as the Indian monsoon and southern Chile, 
and Europe the model simulates realistically the annual cycle of rainfall, even though the 
interannual variability is not well simulated, showing large spread among members or 
even simulating anomalies of opposite sign to those observed.  In other regions the model 
shows under- or over-estimations of rainfall all year long, or during the peak of the rainy 
season.  Some regions show a realistic simulation of the interannual variability during the 
whole 1982-91 periods, while over other regions the best simulation is detected only 
during extreme El Niño years.   
 Fig. 4a-n shows the ROC curves for several regions in the world. Buizza et al. 
(1999) suggest that an area under the ROC curve of more than 0.80 is an indication of a 
good prediction system, and an area of 0.70 is the limit for a useful prediction system.  
Fig. 4 shows that the area under the ROC curve for northeast Brazil is 0.91 and 0.82, 
Pacific ITCZ is 0.91, Indonesia is 0.70, Northwest Peru and Ecuador is 0.77, and eastern 
Africa is 0.74. Northern Amazonia falls almost on the limit of predictability, with 0.69.  
The areas under the ROC curve in southern Brazil, North and South American monsoon, 
Europe, Southern Brazil-Uruguay, Southern Chile and India fall below the 0.70 threshold 
value.  Fig. 4a-d shows that for Amazonia and northeast Brazil, Pacific ITCZ (Fig. 4l), 
Northwest Peru-Ecuador (Fig. 4f), eastern Africa (Fig. 4h) and Indonesia (Fig. 4j), the 
ROC curve bends toward the top left, where hit rates are larger than false-alarm rates, and 
thus suggesting good model skill.  Northern Amazonia (Fig. 4a) and eastern Africa (Fig. 
4h) show the curve bend more to the central left side, while for the rest of regions, the 
curve lies close to the diagonal, suggesting that the forecasts system does not provide any 
useful information in those regions. In Europe (Fig. 4m) and northeastern USA (Fig. 4n) 
the line falls below the diagonal suggesting a negative skill.   

In Eastern Africa and Northwest Peru-Ecuador, the relative good skill shown by 
the ROC curve and the large Brier score values for the same regions do not show a 
consistent figure of model skill for these regions.  One way to reconcile those two results 
based on ROC and the Brier skill scores is to consider what the different skill scores are 
designed to measure.  The Brier skill score is based on rainfall anomalies and the ROC is 
based on the hit and false-alarm rates.  The effect of the strong warm forcing in the 
tropical Pacific may be contributing significantly to increase the ROC score (area under 
the ROC curve). 

Based on the dispersion among members of the ensemble, and the correspondence 
between measures of model skill defined by the Brier score and the area under the ROC 
curve, as well as the correlation of seasonal anomalies, regions such as northeast Brazil 
(northern and southern sections), northern Amazonia and eastern Africa exhibit better 
predictability and good skill of the CPTEC/COLA AGCM in simulating the interannual 
rainfall variability, as compared to regions such as southern Brazil, India, or the North 
American monsoon.  For those regions, the relatively poor predictability of rainfall 
during their peak season is evident due to the fact that the curve lies much closer to the 
diagonal.  Work by Mason and Graham (1999) and Mason et al. (1999) have shown good 
skill of the ECHAM3-T42 AGCM (10 ensemble members for the 1950-94 period) in 
simulating wet conditions (MAM) in eastern Africa, even with the 0.58 area below the 
ROC curve.  Fig. 4h shows that for the FMAM season the CPTEC/COLA model run (9 
ensemble members for the 1982-91 period) presents area below the ROC curve of 0.74.   
 
7. Summary and conclusions 

In general, the model is successful in depicting the large-scale rainfall in the 
tropics in the presence of very large positive SST anomalies.  In some regions 
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(Amazonia, Northeast Brazil, southern Brazil-Uruguay and northwestern Peru-Ecuador) 
the model simulates quite well regional rainfall anomalies during the El Niño years 1983 
and 1987 and La Niña 1989.  However, in the absence of significantly large SST 
anomalies, the model does not represent the observed rainfall variations with the same 
skill as during El Niño years.  In areas, such as the monsoon areas of India and the 
Americas and in some other mid-latitude regions, there is a large spread among members 
of the ensemble and the simulated rainfall anomaly most of the time is not consistent with 
the observed one.  For those regions, this apparent insensitivity of the model to large 
tropical SST anomalies may be responsible for the lower skill of the model over those 
regions.  Better predictability and model skill is found in continental and oceanic tropical 
and equatorial regions.  

Rainfall in northern Amazonia is systematically underestimated by the model at 
the peak of the rainy season, while in the adjacent Northeast Brazil the model tends to 
overestimate rainfall.  However, in these regions the model depicts a realistic annual 
cycle as well as interannual variability of rainfall anomalies.  The correct simulation of 
the annual cycle does not always guarantee a realistic simulation of the interannual 
variability of rainfall.  This is the case of the Indian subcontinent, where the model 
depicts a very realistic annual cycle of rainfall, but the interannual variability is not well 
represented.  In regions such as Northwest Peru and southern Brazil, the large scale 
forcing associated with large SST anomalies in the equatorial Pacific during El Niño 
determines a quite realistic simulation of rainfall anomalies in those regions, while during 
La Niña or neutral years the models does not always simulate the observed rainfall 
anomalies.  

The ROC have been used to assess model skill and climate predictability in 
several regions of the globe.  Northeast Brazil, northern Amazonia, southern Brazil, 
Northwest Peru-Ecuador (sensitive to El Niño’s warming), Sahel, Indonesia-West 
Pacific, Central Australia, Europe and the Pacific ITCZ show lower Brier scores, 
indicative of better model skill.  The South America regions also show the low spread 
among members of the ensemble for the interannual variability of rainfall anomalies.  
The area under the ROC curve is a simple index for summarizing the skill of a forecasts 
system.  If we use an area of 0.70 as the limit for a useful prediction, Northeast Brazil 
(northern and southern sides), northern Amazonia, Northwest Peru and eastern Africa 
exhibit areas above this threshold value.  This indicates that the CPTEC/COLA AGCM is 
able to simulate rainfall conditions at the height of the rainy season in those regions.  In 
other regions, such as southern Brazil, India and the North American monsoon region the 
rainy season is considered relatively unpredictable in this model, even though for some of 
them the model may be able to simulate rainfall anomalies associated with extremely 
large SST forcing such as the strong El Niño during the run’s period.  The possibility that 
there may be some predictability of the FMAM rainfall in eastern Africa was not 
indicated by the Brier skill score, but is suggested by the ROC curve.    

In summary, the model responds very well to large scale SST forcing in the 
tropical oceans, especially the warming during extreme El Niño or strong cooling during 
La Niña years, and hence can reproduce many aspects of interannual rainfall variability 
in several regions in the tropics, mid- and high-latitudes.  As in several other climate 
models, simulations forced with observed SSTs could capture the most prevalent 
anomaly patterns observed in the atmosphere, with better skill in regions with high 
predictability such as Northeast Brazil, NW Peru-Ecuador, and northern Amazonia, 
Indonesia, the Pacific ITCZ region and Eastern Africa.   
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Figure 1. Selected land and oceanic regions for the computation of rainfall indices 
 

Figure 2. Annual cycle of observed and modeled rainfall in several regions of the 
globe (mm/day).  Thick full line shows the observed rainfall. Thick broken lines 
represent the mean rainfall from the model ensemble.  Thin full lines represent each one 
of the members of the ensemble. 
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Figure 3. Interannual variability of observed and modeled normalized rainfall 
departures in several regions of the globe, during the peak of the rainy season.  Thick full 
line shows the observed rainfall. Thick broken lines represent the mean rainfall from the 
model ensemble.  Thin full lines represent each one of the members of the ensemble. 

  

Figure 4. Hit rates versus false-
alarm rates for rain averaged during  
the peak season for several regions  
of the world from 1982-91.  The Hit 
and False alarm rates were calculated
using rainfall simulated by the 
CPTEC/COLA AGCM  
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