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Abstract. The evaluation of nearly singular single layer potentials encountered in boundary
element methods is treated by a new approach. The potential is expressed as a sum of a one-
dimensional integral and a correction term that vanishes for planar surfaces. The small variance of
the second term’s integrand allows the use of a quasi-Monte Carlo quadrature. Numerical results
show that a significant reduction in computational time is obtained over algorithms employing domain
subdivisions.
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1. Introduction. In boundary element methods, the solution of a boundary
value problem is expressed in terms of an integral over the boundary S of the original
domain. For potential problems, a solution φ is obtained by solving the Fredholm
integral equation

λ(p)φ(p) +

∫
S

φ(q)G(p, q) dσ = f(p), p ∈ S,(1.1)

where G = 1
4π

1
|p−q| . p = (ξ, η, ζ) ∈ R

3 is called the field point.

Discretization of (1.1) poses the task of evaluating

U =

∫
S

g(q) G(p, q) dσq,(1.2)

called the single layer potential with density g. A number of methods has been
described [4], [10] to deal with integrals where the integrand behaves like the funda-
mental solution of Laplace’s equation. However, usually the assumption that S is of a
particular form or has a certain parametrization is made, and/or the case where the
integral is nearly singular is ill treated. In this paper, we will relax the usual condi-
tions over the parametrization on S, and we also treat the case where U assumes a
moderate to a highly near singular character, as explained below. This is a topic of
interest in the boundary element method, in particular, in higher-order methods.

Let S be defined by a mapping T : P = [a, b]× [c, d] −→ S with the property

T (∂P) = ∂S.(1.3)
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82 LEANDRO FARINA

It is useful to classify U according with the order of magnitude of the distance dist(p,S)
between the field point p and the surface S. Thus we say

if dist(p, S) = O(1), U is regular,(1.4)

if 0 < dist(p, S) ≤ o(1), U is nearly singular, and(1.5)

if dist(p, S) = 0, U is singular.(1.6)

We are mainly interested in the case in (1.5). In this case, the integral U above is
regular. However, as the integrand is near a singularity, standard quadrature formulae
are not appropriate. This case appears in the boundary element method, typically in
applications involving bodies with thin components where one part of S is close to
another part of this surface. Moreover, the occurrence of nearly singular integrals is
also associated with more general types of domains, depending on how the surface is
discretized or panelized. A large difference in size between two panels may create the
condition described in (1.5). Recently, it was shown by Luo, Liu, and Berger [7] that
conventional boundary integral methods will not degenerate even when applied to
thin structures with the thickness to length ratio in the micro (10−6) or nano (10−9)
scales. This is true as long as numerical difficulties, such as the calculation of the
nearly singular integrals, are addressed.

2. Semianalytical approach. Integrals of type (1.2), where g is a polynomial,
can be evaluated in closed form when the surface S is a flat polygon (see Newman [8]).
However, for an arbitrary surface S, numerical integration becomes mandatory in the
evaluation of U . Our approach here is to use analytical evaluation to a maximum
degree in this ultimately numerical task. This will sustain the accuracy and efficiency
of an analytical evaluation into the method.

Thus we decompose the surface integral U as

U = Uo + Uc,(2.1)

where Uo is a planar approximation to U in the sense that it is given as an integral
over a flat domain in R

3 and it coincides with U when S is flat. Uc is the correction
due to this approximation. As we will see, the inner integral in Uo will be evaluated
analytically.

A precise expression for Uo and Uc will be given later. Let us first describe the
change of variables defining the auxiliary flat domain.

3. New coordinate systems. The function G presents a weak singularity at
q = (x, y, z) = p, where it is unbounded. The fact that this function’s integral is
finite can be easily proved by using polar coordinates, since the jacobian will cancel
the singularity. This also suggests a way of evaluating U numerically as a regular
integral. Consider a new coordinate system given by

(x̃, ỹ, z̃) = M−1


 x

y
z


 ,

where the field point p is the origin lying on the x̃ỹ-plane, denoted by D. M−1 is a
3× 3 matrix. Using the polar coordinates ρ =

√
x̃2 + ỹ2, θ = arctan(ỹ/x̃) gives

U =
1

4π

∫ 2π

0

∫ R(θ)

0

g(ρ, θ)
ρ√

ρ2 + h2
J̃ dρdθ,(3.1)
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EVALUATION OF SINGLE LAYER POTENTIALS 83

S

D

P
(u,v)

(x,y,z)

(ρ,θ)
T

M, M
-1

Fig. 1. The domains P, S,D and the transformations T,M , and M−1.

where h = z̃(ρ, θ) and R(θ) is the value of ρ, as a function of θ, at the boundary of S.
J̃ is the jacobian of the transformation M−1, and it is given by J̃ = 1

nD·nS
, where nD

and nS are the respective normal vectors to D and S at q. Because D is flat, J̃ = n3,
where n3 is the third component of nS .

With this new setting, we see that as q approaches p, the integrand remains
bounded and approaches the value of gJ̃ at that point. Thus, in our approach, the
integral defining U is represented in the physical three-dimensional space.

There are three domains of interest in our problem: the parameter domain

P = [a, b]× [c, d],

the three-dimensional space R
3 (where S is embedded), spanned by the canonical

basis

C = {x, y, z},
or by the alternative basis

B = {x̃, ỹ, z̃},
and the flat domain

D = span{x̃, ỹ} = span{ρ, θ}
where the integrand is regularized.

The main difficulty associated with evaluating (3.1) is that it is not possible, in
general, to evaluate R, h, and J̃ as functions of (ρ, θ). This is a result of the lack
of restriction on S. Indeed, we assume S can be any parametrized surface with the
property (1.3). Then, the fact that the transformation T : P = [a, b] × [c, d] −→ S
is not, in general, invertible prevents us from evaluating R, h, and J̃ directly as
functions of variables in S or D (see Figure 1) and therefore from using a quadrature
formula where the location of the integration points are predefined. In other words,
the control over the integration points is lost; the relative locations of these points in
P will be altered by the transformation T . Thus our approach is to use a interpolation
quadrature [2] based on linear functions or on splines for computing Uo and a Monte
Carlo method for Uc. We will describe and give details about this approach in the
following sections.
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84 LEANDRO FARINA

.... . .

Field points

O

n S

D
n

S

D 
Fig. 2. The domain D and the surface S.

4. Independence on the field point. We saw that the change of variables
described in the last section, above formula (3.1), provides a regular and simple inte-
grand. However, the new variables are dependent on the field point p. This feature
is inconvenient from the computational point of view if the objective is to evaluate U
for several, say, L field points, as is usual in boundary element methods for numerical
solution of integral equations. Therefore, we will use a similar change of variables, but
independent on the field point. In this way, the matrix of the linear transformation
between C and B is determined once for all computations associated with the surface
S. Moreover, the integration points and certain parts of the integrands are computed
only once. Then consider B = {x̃, ỹ, z̃}, as defined in section 3, but with a fixed
origin O = (O1, O2, O3) ∈ S, which will be a free parameter specified as one finds
appropriate (see Figure 2). The optimum location of O is found by minimizing

max{|z̃| : ((x̃, ỹ, z̃)−O) ∈ S}.
Let us assume g may be expanded in powers of x−ξ, y−η, and z−ζ. In view of this,
for the evaluation of U , it is sufficient to consider Uµνυ :=

∫
S
Pµνυ(p− q) G(p, q) dσq,

where Pµνυ(p− q) = (x− ξ)µ(y − η)nu(z − ζ)υ.
Now define Uµνυ

o as

Uµνυ
o =

1

4π

∫ 2π

0

∫ R(θ)

0

Pµνυ(p− q)
ρ√

ρ2 + bρ+ a
dρdθ,(4.1)

where a = ξ2 + η2 + (z − ζ)2 and b(θ) = −2(ξ cos θ + η sin θ). The value z represents
an average value of z̃ and can be taken as z = O3.

We now have

Uµνυ = Uµνυ
o + Uµνυ

c ,

where

Uµνυ
c =

1

4π

∫ 2π

0

∫ R(θ)

0

Pµνυ(p− q)

{
ρ

r

1

n3
− ρ

r

}
dρdθ,(4.2)

with r = |p− q| and r =
√

(x̃− ξ)2 + (ỹ − η)2 + (z − ζ)2 =
√
ρ2 + bρ+ a.

5. Quadrature of Uo. The objective in this section is to express (4.1) in the
form

Unm
o =

1

4π

∫ 2π

0

F (R(θ), θ) dθ,(5.1)

where F is an exact closed form expression for the inner integral in (4.1), and to
subsequently apply a one-dimensional quadrature to (5.1). This quadrature will be

D
ow

nl
oa

de
d 

12
/3

0/
12

 to
 1

38
.2

6.
31

.3
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EVALUATION OF SINGLE LAYER POTENTIALS 85

based on nodes (θi, Fi) obtained from a sample of points (ui, vi) selected in ∂P :=
P1 ∪ P2 ∪ P3 ∪ P4, where

P1 = {(u, v) : v = c}, P2 = {(u, v) : u = b},
P3 = {(u, v) : v = d}, P4 = {(u, v) : u = a}.

Condition (1.3) assures that R is in fact evaluated at the boundary of S. This is
the only place where (1.3) is used. Thus the quadrature nodes (θi, Fi) are obtained
without the knowledge of their exact location. For smooth integrands F , a quadra-
ture based on interpolating cubic splines or Hermite functions [5] can be used. Al-
ternatively, noninterpolating methods could be used, such as the locally corrected
quadrature proposed by Strain [9], where singularities are allowed in the integrand F .

In order to make F (R(θ), θ) explicit, note that

(x, y, z) = M


 x̃

ỹ
z̃


−O,

where M = {Mij} is a 3× 3 matrix. It follows that on D we have




x = M11 ρ cos θ +M12 ρ sin θ −O1,
y = M21 ρ cos θ +M22 ρ sin θ −O2,
z = M31 ρ cos θ +M32 ρ sin θ −O3.

Therefore,

F (R(θ), θ) =

∫ R(θ)

0

(cρ+ d)µ(eρ+ f)ν(hρ+ l)υ
ρ√

ρ2 + bρ+ a
dρ,(5.2)

where d = −ξ −O1, f = −η −O2, l = −ζ −O3, c(θ) = M11 cos θ +M12 sin θ, e(θ) =
M21 cos θ + M22 sin θ, and h(θ) = M31 cos θ + M32 sin θ. Expanding the binomials
in (5.2), we get

F (R(θ), θ) =

µ∑
i=0

ν∑
j=0

υ∑
k=0

(
µνυ

ijk

)
dif j lkcµ−i(θ)eν−j(θ)hυ−k(θ)

× Hµ+ν+υ−i−j−k+1(θ),

where
(
µνυ
ijk

)
:=

(
µ
i

)(
ν
j

)(
υ
k

)
and

Ht(θ) =

∫ R(θ)

0

ρt√
ρ2 + bρ+ a

dρ.(5.3)

The integral (5.3) can be recursively evaluated using [3]

Ht(θ) =
ρt−1

t

√
ρ2 + bρ+ a− (2t− 1)b

2t
Ht−1(θ)− (t− 1)a

t
Ht−2(θ),

D
ow

nl
oa

de
d 

12
/3

0/
12

 to
 1

38
.2

6.
31

.3
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



86 LEANDRO FARINA

with the starting functions

H0(θ) =




log |2ρ+ b+ 2
√

ρ2 + bρ+ a|
∣∣∣∣∣
ρ=R(θ)

ρ=0

, 4a �= b2,

log |b+ 2ρ|
∣∣∣∣∣
ρ=R(θ)

ρ=0

, 4a = b2,

(5.4)

H1(θ) =
√
ρ2 + bρ+ a

∣∣∣∣∣
ρ=R(θ)

ρ=0

− b

2
H0(θ).(5.5)

6. Quadrature of Uc by quasi-Monte Carlo. The evaluation of expres-
sion (4.2) is more complex than the numerical integration of (4.1). In the case of
Uo, it was possible to separate the variables ρ and θ in order to evaluate the inner
integral analytically. Because n3 is an arbitrary function associated with the given
surface S, the correction component Uc does not permit a similar variable separation.
Thus Uc has to be integrated numerically as a two-dimensional integral. Since Uc

presents the same discretization condition as Uo, namely, the location of the nodes
in the (ρ, θ) variables is arbitrary, this makes the problem more delicate. The ap-
parent solution1 seems to use interpolation in two variables, imitating the procedure
for evaluating (5.1). However, we believe that interpolation provides neither more
efficiency nor more accuracy than a Monte Carlo quadrature. Traditionally, since its
convergence rate is independent of the problem dimension, Monte Carlo quadrature
has been used in high-dimensional integrals as an efficient and robust alternative to
grid-based methods. In what follows we will outline the reasons for using a Monte
Carlo type of quadrature in a low-dimensional (i.e., two-dimensional) integral and
describe the specific approach employed.

Let (ρi, θi)i={1,...,N} be a sequence of points in D. To evaluate (4.2) we use an
integration formula QN of the form

QN (Uc) = A(D)µN (K),(6.1)

where

A(D) =
1

4π

∫ 2π

0

R(θ) dθ,

K = Pµνυ(p− q)

{
ρ

r

1

n3
− ρ

r

}
,

and µN denotes the sample mean of K on D, given as

µN (K) =
1

N

N∑
i=1

K(ρi, θi).

Note that the evaluation of A(D) is intimately related with the numerical integra-
tion of Uo. From (5.1), we see that A(D) is a special case, where F (R(θ), θ) ≡ R(θ).

1Strain’s approach [9] does not seem applicable here because of its restriction that the domain
of integration must be a hypercube.
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0 1 2 3 4 5 6
0

0.5

1

1.5

θ

ρ

Fig. 3. The effect of the partitioning algorithm represented by the location of the integration
nodes in the θ − ρ plane bounded by R(θ). Here Nc = 1, and S is a curved quadrilateral.

As is well known in the theory of Monte Carlo methods, there are basically two
resources for improving the convergence rate of our approximation (6.1) to Uc. One
is to force the nodes to be as uniform as possible, and the other is to reduce somehow
the variance

σ2(K) :=

∫
D

(K −K)2 dρdθ,

where K is the mean of the integrand K.
We will use both means to obtain a suitable algorithm for the computation of

Uc. The particular procedure to achieve this goal in the correction integral will be
described next.

The control variates [1], [6, Chapter 6] form of variance reduction is in fact used
from the beginning in our approach to evaluate the single layer potential as in the
decomposition (2.1). The term

{
ρ

r

1

n3
− ρ

r

}

in K vanishes where the S is flat and, for moderate curvatures in S, presents small
variances.

The other resource that we will use to improve convergence rates is the uni-
formization of the nodes distribution over the domain of integration.

The sequence of the nodes will fill the integration domain more uniformly and less
uncorrelatedly than random nodes characterizing a quasi-Monte Carlo formula. For
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0

0.005

0.01

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

Fig. 4. The surface Sc.

our case, the transformations T and M would void any deterministic choice of points
in P. In order to obtain low-discrepancy nodes, we combine the stratification and the
acceptance-rejection methods [6] into a partitioning algorithm. Thus we divide the
ρ−θ domain in approximately equal sized cells, or subregions, and we accept or reject
the pseudorandom generated points for the formula (6.1) until an equal number of
subnodes Nc are present in each cell. A typical example of the effect of this algorithm
can be seen in Figure 3, where the distribution of the integration nodes in the θ − ρ
plane is represented. In this figure, the bounding curve is R(θ), given for a curved
quadrilateral with equal, straight sides, and the cells are rectangles with one subnode.

7. Numerical results. In this section we present numerical results obtained
from the Monte Carlo-based method described above and compare them with a stan-
dard quadrature employing the Gauss–Legendre formula combined with subdivision
of the integration domain. This subdivision takes place whenever dist(p, S) becomes
small compared with the area of S. All results in this section are believed to have
relative error less than 0.3%.

Let Sc be a curved quadrilateral given by

Sc : (x(u, v), y(u, v), z(u, v)) = T (u, v) = (u, v, 0.01 sinu sin v + 0.01)

and represented in Figure 4. In Figure 5, the dotted line represents a subdivision
method, and the solid line indicates quasi-Monte Carlo. The computing time (on a
UNIX workstation) is plotted as a function of the number L of single layer potentials
computed, each layer potential corresponding to a field point. Thus up to 1000 field
points pi were chosen satisfying the condition dist(pi, S) ≥ 10−2. For L ≈ 28, quasi-
Monte Carlo requires less computational time than a standard subdivision method.
The graph shows monotonically increasing linear functions, and for a large number of
evaluations (1000 field points), we see a factor of 3 difference between the two meth-
ods. This difference is due to the fact that in our field point independent approach,
information such as the location of the integration nodes and parts of the integrands
are reused in all the integrals evaluated. In particular, calls to a subroutine or func-
tion defining the transformation T are made only for the first integral. Furthermore,
the value of A(D) in (6.1) is fixed. Hence the effort to evaluate successive integrals
becomes minimal with the increase of L.

Let us now comment on another example. Suppose now that the surfaces over
which the integration is done are a family of planar quadrilaterals given as

Sε : (x(u, v), y(u, v), z(u, v)) = T (u, v) = (u, v, ε),

where 10−7 ≤ ε ≤ 0.1. In this case, Uc = 0, and the Monte Carlo method is not
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0 100 200 300 400 500 600 700 800 900 1000
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Fig. 5. The results for the surface Sc and for dist(pi, S) ≥ 10−2. The dotted line represents
the subdivision method, and the solid line indicates the quasi-Monte Carlo method.

necessary to use. The integrals are evaluated by one-dimensional quadrature since

U = Uo.

In Figure 6, with the same representations for the dotted and solid line, we see the
computational time as a function of dist(pi, s) = ε, in the range of ε specified above.
Here L = 500, and the field points are distributed uniformly over the x-axis. As can
be seen, the computation of Uo is not affected by the degree of the near singularity,
represented by ε. On the other hand, the use of standard quadratures, even with
domain subdivision, suffers from the necessity of an excessive number of nodes and/or
domain subdivisions.

It should be noted that under certain conditions the algorithm presented here
will not be appropriate in its present form. Although it will provide good results
for the case (1.4) because the integrand will be smooth and well approximated by
polynomials, its efficiency will not be superior to a regular quadrature with a small
number of nodes. Also, for surfaces with large curvature, the contribution from Uc

will be large compared with Uo, and a large number of nodes may be required to
sustain accuracy.

8. Conclusion. A method for computing nearly singular single layer potentials
has been introduced. Restrictions on the parametrization of the integration domain
are relaxed, and the original integral is decomposed in a sum two terms, Uo and
Uc, where the first is an approximation which coincides with the single layer potential
when the surface is planar. The term Uc provides the correction when the surface loses
its planar character. This decomposition not only allows Uo to be evaluated in terms
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Fig. 6. The results for Sε and for L = 500. The dotted line represents the subdivision method,
and the solid line indicates the quasi-Monte Carlo method.

of a one-dimensional regular quadrature but also reduces the integrand variance in
Uc, making it viable to apply a two-dimensional quadrature based on pseudorandom
nodes. This latter quadrature also employs a uniformization algorithm to the nodes
distribution in order to improve the formula convergence rate. Also, because the
quadrature of Uc is not grid-based, adaptiveness can be easily incorporated.

Usually, in boundary element methods, integrals like U have to be computed
several times according with different field points. The method described above ex-
plores this fact by reusing information from previous computations. Numerical results
clearly show an economy in computational costs for this approach when compared with
standard quadrature employing domain subdivisions. For surfaces with moderate cur-
vature, previously prohibitive nearly singular integrals where the ratio distance from
the field point to the surface average length reaches 10−7 or less can be dealt with
using the present algorithm without significant increase in the computational cost.

It may be possible to extend this approach to other types of integrands, such as
the double layer potential. In order to achieve this successfully, one needs to efficiently
integrate the strong near singularity that will be present in U .
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