Activation Function Study for Wavelet Network
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Abstract

The main purpose of this paper is to investigate theoretically and experimentally the use of
family of Polynomial Powers of the Sigmoid (PPS) Function Networks applied in speech signal
representation and function approximation. This paper carries out practical investigations in terms
of approximation fitness (LSE), time consuming (CPU Time), computational complexity (FLOP)
and representation power (Number of Activation Function) for different PPS activation functions.
We expected that different activation functions can provide performance variations and further
investigations will guide us towards a class of mappings associating the best activation function to
solve a class of problems under certain criteria.
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1 Introduction

Wavelet functions have been successfully used in many problems as the activation function of feed-
forward neural networks [ZB92],[STK92], [PK93], [2a96]. There are claims that many biological fun-
damental properties can emerge from wavelets transforms [Dau88]. A number of practical problems
are waiting for new approaches to be applied. Activation functions are very important in the pro-
cess of improving the performance of wavelet networks when used in function approximation and
representation.

A family of polynomial wavelets generated from powers of sigmoids (PPS) provides a robust way
for designing neural network architectures [MFV96]. The PPS technique combines interesting features
of neural networks, wavelet transform and classical polynomial ideas to tackle real world problems.
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This paper shortly describes the family of PPS function. It compares the classical radial basis
functions to PPS-Radial and PPS-Wavelet functions by a linear model [Ach56]. Other experiments,
speech signals, are represented by adaptives PPS Radial and Wavelets neural networks.

2 PPS - A Family of Polynomial Powers of Sigmoids

Let T : IR — [0,1] be a sigmoid function defined by Y(z) = ﬁ—le-_—, . The nth-power of the sigmoid
function is a function T™ : IR — [0, 1] defined by T"(z) = (Tx;(_—z))” Let © be the set of all power
functions defined by 1:

© = {T°%z), T'(z), T*(z),- -, T"(2), - -} (1)

Radial functions are a special class the functions. Their characteristic feature is that their
response decreases or increases monotonically with distance from a central point. The center, the
distance scale, and the precise shape of the radial function are parameters of the model, all fixed it is
linear. A typical radial function is the Gaussian [FP91]. A PPS radial function is obtained from the
first derivative of T(z), it is written a linear combination of PPS:

Pi(2) = =T%(z) + T(z) (2)

In [MF97] an effective procedure for generating polynomial forms of wavelet functions from the
successive powers of sigmoid functions is presented. The resulting functions, referred to as polynomial
wavelets, represent a robust solution for the construction of neural networks based on wavelets. Now,
it is illustrated four examples of PPS-wavelet functions can be defined by:

Pa(z) = 27%(z) - 3Y%(z) + Y(z) (3)
Ya(z) = —6YT4(z)+ 1273(2) — 7T?(z) + Y(z) (4)
Ya(z) = 247(z)° - 60T*(z) + 5073(z) — 157%(z) + T(z) (5)
Ps(z) = —120.7T%(z) — 3607%(z) — 390 *(z) + 180.73(z) — 31T%(z) + Y (z) (6)

This construction technique is interesting because the family of PPS-wavelets comes naturally
from a sequence of derivatives of the sigmoid function.

3 On Approximation of Functions by RBF and PPS

Radial functions are simply a class of functions. In principle, they could be employed in any sort
of model (linear or nonlinear) and neural network (single or multi-layer) paradigms. However, in
1988 Broomhead and Lowe [BL88] showed that radial basis function network have traditionally been
associated with radial functions in a single-layer network such as shown in Figure 2.

In order to investigate the function approximation , it was selected 10 different functions as
defined in Table 1. Four sample sets of 201, 101, 51 and 26 equally spaced points were used to test
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the approximation on the interval z € [—10,10] . In this investigation the functions ¥y, %2, ¥s and
the Gaussian function were used to approximate the functions presented in Table 1

h(z) = cosle)=siniz) fa(z) = =iz}

fale) = 2 fale) = 5(~T%(z) + T(2)

fo(@) = | 102Y3(z) - 3T%(x) + T (2)) || fo(e) = 27%(2) - T%(z)

fr(z) = | Beos(T(2)) + 4sin(TX(2)) - 8 || fs(=) = e

fo(z) = i fio(z) = | 3(TH(z +2)+ T'(z - 2) - 2T (2))

Table 1: illustration of analytic functions used in this application

The Figure 1(a) shows the least squared error for the functions. The Figure 1(b) shows the time
in seconds spent. The Figure 1(c) shows the number of flops for the sets.

/

0=} \N Y

(2) (b) (c)

Figure 1: Plots of the squared errors, time spent and flops of the functions versus the sets of with
samples with 201, 101, 51 and 26. We used the functions 1, = “0”, ¥y = “*”, 5 = “4” and the
Gaussian by “- -7 .

The test set 3 with 51 samples was best approximated by function 5. For a large number of

samples the process is not very good, the LSE is too high. But for samples like 51 and 26 the technique
is very adequate.
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4 PPS-Wavelets and PPS-Radial Neural Networks

The interest for the application of neural networks in function approximation was much enhanced after
the results obtained by Hornik [Hor89] and Cybenko [Cyb89]. More recently, many works have been
able to show the attractive characteristics of using neural networks, more specifically feedforward
neural networks, as universal function approximators [Fun89], [HN89], [Hor89],(Cyb89], [LYPS93],
[WG95]. In general, every continuous function can be represented by Equation 7:

o) = 3 wp(ds(e — 1)) ™
=1

where w;,t; e d; are the weights, shifts and dilations of the mother function (e), respectively [Chu92],
and m is the number of basis function employed. In the context of neural networks, this definition
can be represented through the architecture illustrated in Figure 2.

input wavelet layer output error

x
"2 , out acc. v
- a - error s
2 2 —_—

To Learn

o
a

Figure 2: A neural network which employs wavelets as the activation function. The first layer corre-
sponds to the set of adaptable wavelet basis functions. The second (output) layer combines the re-
sponses of the basis function and produces an output out used to compute the cost function acc.error.
The error propagates back to the network for the continuation of the learning process if it exceeds a
maximum allowed.

In this paper, a feedforward neural network is defined by an input {z,,yn}, where n is the
number of patterns, a set of coefficients (w;),j = 1..m that correspond to the weights of the basis
functions, by the elements (¢;),7 = 1..m, and (d;),j = l..m, that represent the coefficients of shifts
and dilations of the activation function ¥(d;(z — t;)); and by the variable (y;) that corresponds to the
desired output of the network.

5 PPS Activation Functions Applied on Speech Representation

In order to demonstrate the function approximation performance of PPS-Wavelet and PPS-Radial
network in comparison with other activation functions, we select the problem of representing three

phonemes, “a”, “e” and “i”, used by Szu at al[STK92]. Those patterns were extracted from speech
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signal and it can be seen in Figures 4(a), 5(a) and 6(a), it is approximates just that single period.
Actually, the spoken signal is a periodic pattern of the phonemes the same techniques.

The main purpose of these experimental results with PPS Function Networks is to carried out
practical investigations in terms of approximation fitness(LSE), time consuming(CPU Time), compu-
tational complexity(FLOP) and representation power(Number of Activation Function) for different
PPS activation functions. Intuitively, we expect that different activation functions can provide per-
formance variation and further investigations will guide us for a class of mapping associating the best
activation function to solve a class of problem under certain criteria.

Three PPS neural networks were trained with activation functions ,, ¥ and ¥s. Where 1, is
a PPS-radial basis function and ;,1s are PPS-wavelets. The experiments were carried out with 5,
10, 15,20, 25, 30 and 40 hidden neurons as described in Figure 2.

The least square errors results obtained from used of the three PPS functions applied to speech
signal of the vowel “a”, “e” and “i” can be seem in Figure 3(a),(b) and (c) respectively.
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Figure 3: Least square error for representing the vowels “a”, “e¢” and “i” with ¥; = +, ¥ = * and
s = o activation functions varying the . :mber of hidden neurons.

The Figure 3 demonstrates that vowel signal have differents degrees of difficulty of representation.
Also, for small number of hidden neurons, the use of different activation functions provides varied
performance for the neural network. When increasing the number of hidden neurons, the LSE for
different activation functions gets close. The best results were found when using 5.

The signal representation of the vowel “a” with 25 hidden neurons, “e” with 40 hidden neurons
and “i” with 20 hidden neurons using 1;, ¥ and 15 are illustrated in Figures 4, 5 and 6 , respectively.

The experimental results confirms the potential application of PPS functions for another re-
al world problems. Theoretical results in Marar [MF97] have demonstrated the robustness of PPS
techniques and further use in many correlated areas.

6 Conclusions

In this paper, a family of polynomial wavelets was presented constructed from powers of sigmoids. It
has been shown, in the context of function approximation, that this set of functions can provide a very
good approximation capability, with a fast convergence of the training process. The problem of speech
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Figure 4: The signal of the Vowel “a” represented by 15, 12 and 1; respectively

"o 5 [ 5 100 5 [] 5
(a) (b)

Figure 5: The signal of the Vowel “e” represented by s, 12 and 9, respectively

Figure 6: The signal of the Vowel “i” represented by 5, ¥, and ; respectively
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signal representation was investigated with the use of PPS neural networks. The results demonstrated
a good fitness on original signals. One of the advantages of using wavelets in the design of neural
networks is the reduced number of basis function usually required to give a good approximation to a
function [STK92],[PK93],[MF97]. This family of PPS functions also represents a potential scheme for
the development of efficient neural network structures in pattern classification problems [STK92].
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