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Diluted Josephson-junction arrays in a magnetic field:
Phase coherence and vortex glass thresholds
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The effects of random dilution of junctions on a two-dimensional Josephson-junction array in a magnetic
field are considered. For rational values of the average flux quantum per plafudtie superconducting
transition temperature vanishes, for increasing dilution at a critical wai(i€), while the vortex ordering
remains stable up te, >Xs, far below the value, corresponding to the geometric percolation threshold. For
Xy <X<Xp, the array behaves as a zero-temperature vortex glass. Numerical restiksi@ from defect
energy calculations are presented and are consistent with this sc¢8a163-1828)00818-2

Vortex-glass states in disordered three-dimensional supeother low rational values of. In presence of random-
conductors have been the focus of much recent intérégt.  dilution disorder, two natural questions arige) are there
the absence of screening, they are believed to have a truevo dilution thresholdsxs andxy, , for phase coherence and
superconducting phase, with vanishing linear resistivity, awvortex-lattice order, respectively? Does a vortex-glass phase
finite temperatures. By contrast, in two dimensions, vortex-occur over a significant range>xy, ?
glass modefsand experiments on superconducting ftms  In this work, we argue that for rational values ff the
show that vortex-glass order is destroyed at any finite temsuperconducting transition temperature of the array vanishes,
perature with a nonzero but exponentially small resistivity.for increasing dilution, at a critical valuey(f). The vortex-
This zero-temperature vortex glass can be characterized bylattice ordering remains stable upxg, (f)>xg(f) but both
thermal correlation length exponem which determines, for values are much below the valug corresponding to the
example, the current density scaly~T***7, where non-  geometric percolation threshold. Fry <x<X, there is a
linear behavior shows up in the current-voltage zero-temperature vortex glass. These features are verified nu-
characteristicd® Recent estimates giver~2 for various merically for f=1/2, using a bond-diluted frustratedY
vortex glass model%. model on a triangular lattice, and extensive zero-temperature
Randomly diluted Josephson-junction arr&y3A’s) have  calculations. Domain-wall energy calculations give an esti-
been used to model disordered superconductdfén zero  mate of a wide ranges, <x<x,, for a zero-temperature
field, the superconducting transition temperature vanishes gbrtex glass below the geometrical percolation thresixgld
the percolation thresh(ﬂdp, wherex is the concentration of =0.652. We findxg=0.14(1) andx,, =0.17(1) consistent
diluted junctions. Fox> X, there are only uncoupled finite with the proposed scenario. In the vortex-glass phase,
clusters and long-range phase coherence is destroyed.,At ~1.9, as estimated from the size dependence of defect ener-
the infinite percolating cluster shows up in the scaling behavgies excitations. Interestingly enough, this estimate is very
ior of the dynamic conductivifand nonlinear resistivityIn  close to the value obtained for the gauge-glass nfodeich
the presence of an external field, a diluted JJA is an experimay suggest a common universality class.
mentally controllable model to investigate phase coherence We consider a two-dimensional Josephson-junction array
and vortex glasses in two dimensions. For rational values ah a magnetic fieldB described by the Hamiltonian of a
the flux quantum per unit cefl, an orderedX=0) JJA has frustratedXY model
a ground state consisting of a periodic pinned vortex lattice,
with additional discrete symmetries resulting from commen-
surability effects® The melting of this vortex lattice at a H=—2 J; cos 6~ 6;—Ay), @)
temperaturerly, , driven by domain-wall excitations, com- @
petes with the superconducting transitionTgtdriven by the  where 6, is the phase of the condensate wave function in a
Kosterlitz-Thouless vortex unbinding. Fb#1/2, these tran-  grain at sitei and J;; is the Josephson coupling. The sum-
sitions either coincide or have very close transitionmation is taken over all nearest neighbors of a regular refer-
temperature$, Ty, =Ts. Similar behavior is expected for ence lattice. The dimensionless line integral of the vector
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T the glass order at any finite temperature, leading to an iden-
tification of the thermal correlation length exponentas
=1/6|. Our numerical results fof=1/2, described below,
are consistent with this behavior, and provide an estimation
of v1. In absence of thermal fluctuations, Bt 0, vortices
are pinned by disorder and a nonlinear response to an applied

S N VG current is expected leading to a vanishing linear resistance
and nonzero critical current for<<x.
We have carried out a detailed numerical study for
=1/2 at zero temperature, using a bond diluted frustrated
X X i - JJA on a triangular lattice, where the critical dilution thresh-
s VL P old for bond percolatichis Xp=0.652. For this value of,

FIG. 1. Schematic phase diagram of a diluted JJA as a functioOrtex-lattice ordering can be conveniently described in

of temperaturel and dilutionx, for an average rational frustration terms of aZ, chirality order parameten =X ;,(6;— 6

f, showing a superconducting pha&, a normal ordered vortex- —Aj;)/(27), where summation is taken about an elementary

lattice phasé€N), and a vortex-glass phaééG). A single transition  plaquette of the actual lattice, and the gauge-invariant phase

is assumed ak=0. If the transitions are already separatedxat difference is restricted to the intenvah 7, + 7]. In the un-

=0, dilution would further increase the separation.TAt0, avan-  diluted case, the ground state consists of a pinned vortex

ishing linear resistance is expected forx, due to vortex pinning.  |attice corresponding to an antiferromagnetic arrangement of

x=*1/2. To study the stability of the ordered phases, we

potential A;; about each elementary reference-latticeuse a defect energy renormalization anafyfsit T=0. A

plaquette of ares is Z,A;;=27f, where the frustration defect is created in a system of sike<L by imposing a

parametef =B S/ ®, measures the number of flux quadtg  change in the boundary conditions in one direction. The

per plaquette. A bond-dilution concentrati@ncorresponds changeAE(L) in the ground-state energy for small systems
to J;; being zero od, with probabilitiesx and 1-X, respec- is calculated for a large number of samples by directly
tively. Since any closed loops of nonzero bordbave an  searching for the minimum energy. We used an improved
area which is an integer multiple of the elementary &ea algorithm based on Ref. 13. Typically, 3000 configurations
the properties of this model are periodicfirwith period 1, of disorder have been used for each system size. To study
and it is therefore sufficient to considex@ <1. both phase coherence and vortex-lattice order, we consider
For f=0, the Hamiltonian reduces to the standard dilutedwo types of defectd(i) From the energy difference between

XY model, which is known to be superconducting®or  periodic E, and antiperiodidE, boundary conditions in the

<Xp. When f+#0, there must also be a thresholg, for = phasess; we obtainAE;=E,—E,, which is a measure of

vortex-lattice disorderirfybelow the percolation threshold, phase coherence, and is related to the renormalized stiffness

XyL<Xp. In the undiluted cas&=0, the ground state for constant)(L) = pAE,/27?, wherep=2//3 is a geometrical

rational f=p/q (q=2) consists of a pinned vortex lattite factor for the triangular lattice. In the thermodynamic lindit,

with a gxq unit cell. For small dilutionx<x,, , the long- s finite in the phase-coherent state and vanishes in the inco-
range order of the vortex lattice persists, provided an infiniteherent statefii) A domain-wall defect energy is obtained as
cluster of these cells exists. Sinog, (f) corresponds AE,=E,—E,, whereE, is the ground-state energy with
roughly to the percolation threshold for cells of sigxq, reflected boundary conditior}d corresponding to the energy
the percolation threshold fayx q cell dilution is reached cost for a domain wall in the vortex lattice. In the presence of

much below the unit bond-dilution threshold. Alternatively, disorder,AE; and AE, fluctuate between samples, with a

long-range order of the vortex lattice requires connectivitydistribution that can be characterized by its moments. Stabil-

over at least] bonds, as in bootstrap percolatibhyhich is ity of the ground state against thermal fluctuations requires
known to lead to a percolation threshold below the unit bondhat the averageAE], where[ ] denotes a disorder average,
percolation. Since vortex-lattice disordering leads to suppreds finite or increases with for theU(1) andZ, symmetries,

sion of phase coherenéex,, is an upper bound for the respectively. Figure 2 shows the behavior of fiAE, ] as a

superconducting threshokd. This implies that the transi- function ofL for increasing dilution. For sma¥, it increases

tion temperature should vanish at ag<x,, and that the with L, indicating the existence of long-range phase
thresholds are as illustrated in Fig. 1. At least for low-ordercoherencé? For sufficiently largex it clearly decreases for
rational values off, we would expecig(f')<xg(f) if f’ increasingL, indicating a disordered phase. The change in

<f sincef’ requires a higher connectivity. Far, (f)<x  the behavior yields an estimate ®=0.141). Figure 3

<X,, there is no long-range order, and this phase shoulgdhows a similar plot fof AE,]. The increasing trend with

correspond to a two-dimensional vortex glass, where a truéor small x corresponds to a vortex-lattice ordered phase,
phase transition is known to occur only B=0.2! Anin-  which persists for a small but finite range abaxe. For
tervening glass phase near percolation threshold is also elargex, it decreases with., and yields an estimate of,_
pected from mean-field theofy.This phase can be =0.171). Thusxy, >Xg, as indicated in Fig. 1. The disor-
characterizetby a critical exponen® that determines how dered phase foky <x<x, can be regarded as a vortex
low-energy excitation& E(L) from the ground state behave glass, since it lacks long range order in the vortex lattice.

at long length scalek. For aT=0 vortex glassAE~L?, The stability of the glass phase against thermal fluctua-

with 6<0, and thermal excitations of scage- T~ "7 destroy  tions is determined by the size dependence of the second
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FIG. 2. Finite-size behavior of defect energy,] probing the
superfluid density for increasing dilutionand various system sizes
L. The change in thé dependence determines the threshald

FIG. 4. Finite-size behavior of the second moment of the defect
energy distributionw; and w, in the regionx,, <x<x, for x
=0.3. The negative slope of im; XIn L gives an estimate of 4.

moment of the energy excitations;=+[AE]—[AE;]°  der, random dilution does not explicitly affect the phase dif-
=L’ Here#>0 indicates a glass phase at nonzero temperaterence ¢, — 6; between two superconducting grains in Eq.
ture, wherea®9<0 implies that arbitrarily low-energy exci- (1). Its relevance can be studied through two coupled frus-
tations at long length scales can be thermally excited, detratedXY models
stroying the glass phase at any finite temperattiféhe size
dependence ofv, for a value ofx=0.3 in this regiof is
shown in Fig. 4 and clearly indicates a negativéor both J
w; andw,, and so the vortex glass only occursTat0. The  H=—3 >, [cog 6;— 6;— Ayj) +COS ¢ — b — Ajj— ;)]
exponentr; =1/ 6| of the superconducting thermal correla- i
tion lengthZec T~ 7T can be estimated from the slopewf in
a log-log plot, givingrt~1.9. Interestingly enough, this es- _hz Cos 6 — i), 2
timate is very close to the value obtained for the gauge-glass
model? suggesting a common universality class, but furthenwheret;; is 1 or O with probabilityx and 1-x, respectively.
data would be necessary to check whetheis x dependent. In the limit h—oo, the phases are couplet= ¢;, and the

At finite temperatures, thermally excited vortices and dis-original model in Eq(1) is recovered. The second term has
order effects can significantly reduce the ordered phases fdhe same form as the Hamiltonian describing positional dis-
x<Xy_(f ), since bond dilution introduces correlated ran-order in a superconducting array in the presence of magnetic
domness in the flux, as in the case of an array with disordefield,® with a particular bimodal distribution aof; . A de-
only in the positions of the grain$.Unlike positional disor-  tailed analysis in the smahi limit combined with knownT

#0 resultd® for x=0 and the above calculations &0,

15 : : suggest the phase diagram of Fig. 1. For coupl&dmodels
Ox-0e without disorder:® the couplingh renormalizes to large val-
0x=0.15 ues even when initially small, while the phase transitions can
e be described in terms of vortices in the average phase vari-

able (0,+ ¢;)/2. Guided by this, we consider initially the

1.0 ¢ two XY models in Eq.(2) to be independent, and consider

the particular rational valud,=1/2, where the relevant ex-
il citations, chiral domain walls and vortex charges, are better

understood:® In this case, the disorder variables act as ran-

dom bonds on the chiral order paramejerand as random

05 ¢ 1 dipoles on the vortex charges. If the transition in the pure

6//?//"/’/’\‘;\'/? case is singlglsimultaneous disordering of the chiral and
XY-like variables, the differently acting disorder can thus
Dﬂ_#b_\P\‘> separate the two transitions with vortex unbinding at tem-
0.0 \ peratures below the chiral transitiéhin fact, Monte Carlo

2 7 12 simulations for the frustrated Y model on a square lattice
L with positional disorder are consistent with the splitting into
FIG. 3. Finite-size behavior of defect enertf,] probing the ~ two transitions.’ For the triangular lattice considered here,
vortex-lattice stability for increasing dilution and various system Wwe have estimated the chiral transition temperature at
sizesL. The change i dependence determines the threshgjd. =Xg, Where Tg=0 (Fig. 1), from the peak in the chiral



57 BRIEF REPORTS 10 317

susceptibility and foundr,, =0.27(3) which can be com- should still remain, since the coupling term should essen-
pared with the estimated separaﬁ%z\Tczo_m atx=0, if tially lock equivalent vortices and chiral variables in both
one assumes a double transition, which clearly shows thathasess; and ¢;. For other values of, we expect similar
disorder tends to separate the transitions. The chiral transgjualitative behavior, as illustrated in Fig. 1, but with the
tion is expected to be in the universality class of the randonchiral transition replaced by the thermal disordering transi-
bond Ising model, where recent studies have shown that thgon of a vortex lattice with a higher-order discrete symme-
specific heat has a broad peak with a very weak logdlog( try.

—T,) divergence but the other exponents remain with the Experimentally, the vortex-glass phase fx)\|;L<x<xp
pure Ising model value¥. This is consistent with Monte could be identified through the change in the current-voltage
Carlo simulations of the frustrateY model on a site- characteristicsextracting the critical exponent;. Another
diluted square latticE) where it is found that the specific sjgnature would be the disappearance of ordered-phase resis-
heat has a broad peak which does not clearly grow withance minima atf=p/q when x is in the f-insensitive
lattice size, in contrast to the undiluted case which grows,grex-glass regiony, (f=1/2)<x<x,.

almost logarithmically. Even when a finite coupling between

the two terms in the Hamiltonian of Ed2) is taken into The work of E.G. was supported by ICTP/IAEA and
account, the effects of disorder on the chiral order parametdfAPESP(Proc. 97/07250-8

1See articles, ifProceedings of the ICTP Workshop on Josephsont?A. J. Bray and M. A. Moore, J. Phys. @7, L463 (1984); M.

Junction Arrays, 199%Physica B222 253(1996]. Cieplak, J. R. Banavar, and A. Khurana, J. Phys24 L145
2D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Revu® (1991).
130 (1992; R. A. Hyman, M. Wallin, M. P. A. Fisher, S. M. “°P. Gawiec and D. R. Grempel, Phys. Rev48 2613(1991); J.
Girvin, and A. P. Youngijbid. 51, 15 304(1995; C. Wengel Maucourt and D. R. Grempel, Phys. Rev. L&®, 770 (1998.
and A. P. Youngjbid. 56, 5918(1997). 14This increasing trend, however, is a small size effect. For large
3S. John and T. C. Lubensky, Phys. Rev. L6§, 1014(1985. it should scale as™"2, _ _
4T, Giamarchi and P. Le Doussal, Phys. Rev. L&®, 1530 In a small rangexy; <x<X,, , bothw, and[E,] increase with_
(1994 which might indicate that a chiral glass phase is stable to ther-

5C. Dekker, P. J. M. Wiigens, R. H. Koch, B. W. Hassey, and A. M@ ft'“‘:t“a_i‘l’”f' H?""e"ﬂh"vtittu.the “”?liteo' SVStﬁ“.“ Eiztes use‘i it
Gupta, PhyS Rev. Let69, 2717(1992 IS NOt possible 1o rule ou al IS small range shrinks to zero 1or

D. C. Harris, S. T. Herbert, D. Stroud, and J. C. Garland, Phys. Zzzir?i(:gltjlr{ dlai:]gza l:es?r?;]ngr]nt)odxe\llL;;(vg .\/zisri;?rigrctc))ig:t? zrat?oar;s of
Rey. Lgtt.25, 3606(19,9]); A-L. Elchenbejrge.r, J. Affolter, M. antiferromagnetic bondgN. Kawashima and H. Rieger, Euro-
Willemin, M. Mombelli, H. Beck, P. Martinoli, and S. E. Kor- phys. Lett.39, 85 (1997]

. shunov,ibid. 77, 3905(1996. 16E . Granato and J. M. Kosterlitz, Phys. Rev. Lé2, 823(1989;

E. Granato and D. Dominguez, Phys. Rev5®& 14 671(1997).

8 : ) E. Granato, J. M. Kosterlitz, and J. Poulter, Phys. Re\B3B
D. Stauffer and A. Aharonyintroduction to Percolation Theory 4767(1986.

(Taylor and Francis, London, 1982 17D, B. Nicolides, J. Phys. 24, 1231 (1991).
°S. Teitel and C. Jayaprakash, Phys. Rev. Llf.1999(1983. 18W. Selke, L. N. Shchur, and A. L. Talapov, Annual Reviews of
103. Adler, Physica AL71, 453 (1991). Computational Physi¢edited by D. StauffefWorld Scientific,

1A superconducting freezing transition may also occur at suffi- Singapore, 199% Vol. 1.
ciently low temperatures and finite cooling rate due to nonequi+®X. C. Zeng, D. Stroud, and J. S. Chung, Phys. Rev383042
librium processe§S. R. Shenoy, Phys. Rev. 35, 8652(1987; (1991).
Physica B152, 72 (1988]. 20HJ. Xu and B. W. Southern, J. Phys.28, L133 (1996.



