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Abstract
In this paper the first results of the application of the Generalized Extremal Optimization (GEO) algorithm to a discrete structural
optimization problem is shown. GEO is an evolutionary brand new algorithm, devised to be easily applicable to a broad class of
nonlinear constrained optimization problems, with the presence of any combination of continuos, discrete and integer variables. So
far, it has been applied successfully to real optimal design problems with continuos design variables and shown to be competitive to
other stochastic methods such as the Genetic Algorithms (GAs) and the Simulated Annealing (SA). Having only one free parameter
to adjust, it can be easily set to give its best performance for a given application. This is an a priori advantage over methods such as
the SA and GAs since each of them have at least three parameters to be set, making their tuning to a particular application more
prone to be computationally expensive and becoming a problem in itself. In this work, the 10-bar truss problem is used as a test case
and the performance of GEO, compared to results from other methods available in literature.
Keywords: Structural Optimization, Truss Optimization, Evolutionary Algorithms, Generalized Extremal Optimization.

1. Introduction
Stochastic algorithms inspired by natural phenomena have been increasingly used to tackle optimization problems. The motivation
behind this trend may be the observation that, either to save energy, reduce waste or produce fitter individuals, nature has
“developed” robust, self-regulating mechanisms, that tend to produce efficient solutions for complex problems. Other motivations are
that these methods are usually easy to implement and are very robust to complex features of the design space, like multiple local
optima. Simulated Annealing (SA) [1] and Evolutionary Algorithms (EAs) [2], particularly the Genetic Algorithms (GAs), are
probably the most used of such methods, having being applied in many areas of engineering and science.

Recently, a new evolutionary algorithm was proposed. Called Generalized Extremal Optimization (GEO) [3, 4, 5], it was originally
developed as an improvement of the Extremal Optimization (EO) method [6], which was inspired by the evolutionary model of Bak-
Sneppen [7]. GEO was devised to be easily applicable to a broad class of nonlinear constrained optimization problems, with the
presence of any combination of continuos, discrete and integer variables. So far, it has been applied successfully to real optimal
design problems with continuos design variables [4, 8, 9, 10], and shown to be competitive to other stochastic methods in test
functions [3, 4]. Having only one free parameter to adjust, it can be easily set to give its best performance for a given application.
This is an a priori advantage over methods such as the SA and GA since each of them have at least three parameters to be set,
making their tuning to a particular application more prone to be computationally expensive and becoming a problem in itself.

Being a brand new algorithm, many features of GEO are still to be explored, including the assessment of its performance on
different types of design spaces. In this context, this work brings the first results of the application of GEO to a discrete structural
optimization problem. It has been argued, that such kind of problems would be more efficiently tackled by methods such as GAs and
SA since they would deal directly with the discrete variables, while the design space has to be treated as continuos when using
traditional gradient based methods [11, 12, 13, 14]. The 10-bar truss problem is used here as a test case to assess the performance of
GEO, compared to results from other methods available in literature.

In the following Sections a brief description of the SA and GA is made followed by a detailed explanation of GEO, the results from
the 10-bar truss test case and the conclusions.

2. Simulating Annealing and Genetic Algorithms
Probably the most known and used stochastic optimization methods inspired by nature are the Simulated Annealing and Genetic
Algorithms. They have been used for tackling structural optimization problems and here we compared some of their results for the
10-bar truss problem found in literature, with the ones from GEO. A very brief description of the canonical implementations of the
SA and GA is provided below. More detailed information on them can be found in [2, 15, 16].

2.1 Simulated Annealing
The SA method was proposed by Kirkpatrick et al [15] at the early 1980’s. It is based on the Metropolis algorithm [17] that was
developed to simulate a collection of atoms in equilibrium at a given temperature (T).  Submitting one of such atoms to a small
random displacement, the variation ∆E of the system energy is calculated and if ∆E ≤ 0 the move is accepted. Otherwise, the move is
accepted with probability:
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where, KB is the Boltzmann’s constant.
Kirkpatrick et al [15] adapted this procedure to an optimization algorithm making the variation in energy be a variation in the value

of the objective function. Moreover, they introduced a schedule to the temperature. Starting from a given point in the design space



and setting an initial temperature T0, a random perturbation is applied to the design variables. If the new solution implies a decrease
on the objective function it is accepted. If not, the new design is accepted with probability proportional to (1). This process is
repeated for some iterations and then the temperature is decreased. The procedure is repeated following a temperature schedule
(annealing) until a given stopping criterion is met. The probability of moves that increase the value of the objective function is
controlled by T and is usually high at the beginning of the search. As T → 0 only moves that decrease the objective value are
accepted and the search becomes deterministic.  Adjustable parameters of the SA are the temperature schedule, how the design
variables are changed, the number of iterations at a given temperature level and the acceptance probability distribution.

2.2 Genetic Algorithms
Genetic Algorithms are part of a more general category of methods called Evolutionary Algorithms (EAs) [2]. The functioning of
these algorithms is based on Darwin’s theory of survival of the fitness. Beginning with a population of individuals (solutions in the
design space), operations of selection, reproduction and mutation are applied through a given number of generations such that the
average population fitness, based on the value of the objective function, is consistently improved. In the Simple Genetic Algorithm
(SGA), each individual is coded in a binary string.  The fitter individuals are probabilistically selected for reproduction and “mate”
by exchanging bits of each other strings, in a process called crossover. A mutation operation is applied to the resulting offspring and
the new generation is formed. This process is repeated for a given number of generations. Parameters to be set in a typical GA are the
size of the population, the selection procedure, the probability and scheme of crossover and mutation, and the number of generations.

3. The Generalized Extremal Optimization Algorithm
The theory of Self-Organized Criticality (SOC) has been used to explain the power law signatures that emerge from many complex
systems in such different areas as geology, economy and biology [18]. It states that large interactive systems evolve naturally to a
critical state where a single change in one of its elements generates “avalanches” that can reach any number of elements in the
system. The probability distribution of the sizes “s” of these avalanches, is described by a power law in the form:
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A simple model for a self-organized system is the sand pile [18]. After some time adding up grains of sand, the pile reaches a
critical slope and from that on even a small perturbation (a single grain) could cause avalanches that may reach, in a probabilistic
sense, the whole pile. After the avalanche, the system would then recover to the critical state. Bak and Sneppen [7] suggested that a
similar dynamic behavior could explain the bursts of evolutionary activity observed in the fossil record and that has been given the
name of punctuated equilibrium [19]. In the Bak-Sneppen model, M species ei (i = 1, M) are represented in a lattice with periodic
boundary conditions and, for each of them, is assigned randomly a fitness number in the range [0, 1]. The evolution is simulated
forcing the least adapted species, the one with the least fitness, and their side neighbors, to change (it can “evolve” or be “extinct”
and replaced by a new one, that not necessarily has a better fitness). This is done by assigning new fitness numbers, randomly, to
these species. Since the less adapted species are constantly forced to change, the average fitness value of the ecosystem increases
and, eventually, some time after initialization all species have a fitness number above a “critical level”.  However, as even good
species may be forced to change (if they are neighbors of the least adapted one), it happens that a number of species may fall below
the critical level from time to time. That is, the equilibrium (being above the critical level in “stasis”) of one or more species is
punctuated by avalanches, whose occurrence is described by a power law [7]. Although the claim that natural evolution may happen
in a system that is critically self-organized has been controversial [20, 21], an optimization heuristic based on the Bak-Sneppen
model may evolve solutions quickly, systematically mutating the worst individuals, while preserving throughout the search process
the possibility of probing different regions of the design space (via avalanches).

Inspired by the Bak-Sneppen model, Boettcher and Percus developed the EO method [6], which has been applied successfully to
combinatorial optimization problems in which a fitness number is associated with the design variables. However, as they pointed out,
in some cases this may become an ambiguous or even impossible task [6]. GEO was devised to overcome this problem, in a way that
it could be easily applicable to a broad class of optimization problems, with any kind of design variable, either continuous, discrete or
a combination of them, on a design space that may be multimodal or even discontinuous and subject to any kind of constraints.

In the canonical GEO the species are represented by a string of L bits that encodes N design variables. That is, each bit is
considered a species. For each of them is associated a fitness number that is proportional to the gain (or loss) the objective function
value has in mutating (flipping) the bit. All bits are then ranked from 1, for the least adapted bit, to L for the best adapted. A bit is
then mutated according to the probability distribution P ≈ k-τ, where k is the rank of a selected bit candidate to mutate, and τ is a free
control parameter. If τ → 0 any bit has the same probability to be mutated, whereas for τ → ∞, only the least adapted bit will be
mutated. It has been observed that the best value of τ for a given application (τbest, i.e., the one that yields the best performance of the
algorithm on the application at hand) generally lies within the range [1, 10], which makes the setting of τ a relatively easy task.

On a variation of the canonical GEO, one bit per variable is mutated at each iteration of the algorithm. In this case the ranking is
done separately for each design variable. This approach has shown to be more efficient than the canonical GEO for problems that has
only bound constraints [3, 4].

The bit encoding can accommodate any type of design variable and for GEO this could be done as described in [4]. Nevertheless,
GEO may also work with other kinds of encoding. In fact, for the truss problem, we worked with the design variables directly,
treating each variable as a species. In Figure 1 is shown the population of species as represented in the Bak-Sneppen model, in the
canonical GEO and on the truss problem.



Figure 1. Population of species in the Bak-Sneppen model, in the canonical GEO and in GEO as implemented for the truss
problem.

As shown in Figure 1, each design variables in the canonical GEO may be encoded with a different number of bits. In fact, the
number of bits necessary for encoding each variable will be dictated by the precision desired for it. GEO has been applied
successfully for optimal design problems with continuos variables using binary coding [4, 8, 9, 10]. Although a binary coding could
also be used for the truss problem, we decided to tackle the problem using the variables directly. The modification on the canonical
algorithm was minimum, as can be seen on Figure 2.

Step1: Initialize randomly the
population of L bits that encodes N
design variables.

Step2: For each bit attribute a fitness
number that is proportional to the
gain or loss the objective function
has, compared to the best value
found so far, if the bit is flipped.

Step3: Rank the bits according to
their fitness numbers.

Step4: Mutate a bit of the population

with probability  Pk ∝ k
-τ

  with
k = 1, L

Was the stopping
criterion met?

The Canonical GEO

No

Yes

Return the best solution
found during the search

Step1: Initialize randomly the
population of N design variables.

Step2: For each variable attribute a
fitness number that is proportional to
the gain or loss the objective
function has, compared to the best
value found so far, if the variable is
changed.

Step3: Rank the variables according
to their fitness numbers

Step4: Mutate a variable of the
population with probability

Pk ∝ k
-τ

  with k = 1, N

Was the stopping
criterion met?

GEO implemented for
the Truss problem

No

Yes

Return the best solution
found during the search

Figure 2. Pseudo-codes for the canonical GEO and as implemented for the truss problem.

In Step 2 the fitness attributed to each bit (or variable in the truss problem) is given by ∆Vi = (Vi – Vbest), where Vi is the value of
the objective function if the bit i is flipped and Vbest is the best value of the objective function found so far. Note that in this Step,
after the value of ∆Vi is calculated, the bit is returned to its original value. For the truss problem the change in the value of the



variables in this step is done randomly. In Step 3 the bits are ranked from k = 1, for the least adapted one (for a minimization
problem, the one with the least value of ∆Vi), to k = L (or N) for the best adapted one. In Step 4 a candidate bit is chosen randomly to
mutate and the value of Pk calculated (k is the value of the rank of the chosen candidate bit - variable). If Pk ≥ RAN (a randomly
generated number in the interval [0, 1]), then the bit is accepted to mutate. This process is repeated until a bit is confirmed to mutate.
Note that in the truss implementation of GEO, the mutation of the candidate variable is done to the value randomly generated in Step
2 (for the bit encoding this is done automatically as the bit is flipped).

Constraints are easily taken into account in GEO. In the canonical algorithm, boundary constraints are incorporated directly by the
binary encoding. The discrete coding also takes into account the boundary constraints directly, since only the discrete variable values
are available to be used. In the canonical GEO, inequality and equality constraints are taken into account by assigning a high fitness
for the bit that, when flipped, leads the algorithm to an unfeasible region of the design space. Note that this move is not prohibit, it
only has a low probability to happen. In fact, the algorithm can even be initialized from an unfeasible design. The same approach was
used for the truss problem, i.e., a high fitness value was assigned to the variable that when changed in Step 2, lead the algorithm to an
unfeasible design.

4. Formulation of the Truss Optimization Problem

The standard 10-bar planar truss consists of 10-hinged bars with the elements connected as shown in Figure 3. The translation of
hinges 5 and 6 is constrained in the plane of the truss and it is subjected to two vertical loads applied at hinges 2 and 4. The main goal
of the problem is to minimize the mass of the truss (M), varying only the cross sections of the truss members, as long as the geometry
of the truss cannot be altered.

Figure 3 – Geometry of the Standard 10-Bar Truss.

Forty-two cross-sectional areas were taken from AISC (American Institute for Steel Construction) Manual to be used as possible
discrete values the truss members may take. These values are presented in Table 1.

Table 1. Possible Bar Cross Section Areas Si ( in
2 ).

1.62 1.8 1.99 2.13 2.38 2.62 2.63 2.88 2.93

3.09 3.13 3.38 3.47 3.55 3.63 3.84 3.87 3.88

4.18 4.22 4.49 4.59 4.8 4.97 5.12 5.74 7.22

7.97 11.5 13.5 13.9 14.2 15.5 16.00 16.9 18.8

19.9 22.00 22.9 26.5 30.00 33.5

The mechanical properties of the bars’ material are:

E = 10,000 ksi,
ρ = 0.1 lb/in3 and
Maximum Allowable Stress (σA) = ±25 ksi.

The maximum allowable truss displacement (uA) is 2 in. Due to the small number of elements, the Method of Consistent
Deformations was used to determine the axial forces acting in the truss bars and the displacement of the hinges.



The optimization problem is formulated as:

Minimize
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where Si and Li are the cross section area and the length of the ith truss bar, respectively.
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where σi (i=1,…10) is the stress of the ith bar and uj (j=1…6) is the displacement jth hinge.

5. Results
The efficiency of GEO on tackling the 10-bar truss problem was compared with 7 other results taken from literature, including the
one that, as far as we know, is the best result found so far for this problem.

As mentioned in Section 3, the efficiency of GEO on a given application is influenced by the proper setting of τ. A strategy that has
shown to be efficient in finding the value of τbest is to run the algorithm a few times, for a fewer number of function evaluations that
the one intended for the main runs at different values of τ, and chose the value that yields the best average results. This procedure
was done for the 10-bar truss problem. The range and steps on the values of τ chosen for the search of τbest ([0.75, 8.00], 0.25), was
based on our previous experience with the algorithm. At each value of τ, 20 runs were performed, each one from a randomly chosen
point in the design space. Due to the stochastic nature of the algorithm, some runs did not find a feasible design after the stopping
criterion was reached (10000 function evaluations per run) on the search for τbest. Hence, a high value of mass (100000 lbs) was
assigned to the runs that end up in unfeasible designs, penalizing the values of τ that were less efficient in leading the search to
feasible designs. Results for the search of τbest are shown in Figure 4.

Figure 4. Average of objective function values found in 20 runs of GEO as a function of τ.



From Figure 4 it can be seen that better results are obtained with τ = 5.00, and this value was used in the search for the best truss
mass using GEO. Twenty runs were performed from randomly chosen points in the design space, and each run stopped after 6x105

function evaluations (this stopping criteria was the same used in reference [13] for a GA with real coding).  The best result from these
20 runs is shown in Table 2, together with results from other methods.

Table2. Best result found for the truss problem from different references.
Sections (in2)

Reference
Truss
Mass
(lbs)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

[22] 5491.71 33.50 1.62 22.90 15.50 1.62 1.62 7.97 22.00 22.00 1.62
[23] 5491.71 33.50 1.62 22.90 15.50 1.62 1.62 7.97 22.00 22.00 1.62
[11] 5613.84 33.50 1.62 22.00 15.50 1.62 1.62 14.20 19.90 19.90 2.62
[12] 5586.59 30.00 1.62 22.90 13.50 1.62 1.62 13.90 22.00 22.00 1.62
[24] 5528.09 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
[13] 5491.71 33.50 1.62 22.90 15.50 1.62 1.62 7.97 22.00 22.00 1.62
[14] 5490.74 33.50 1.62 22.90 14.20 1.62 1.62 7.97 22.90 22.00 1.62

GEO 5525.04 33.50 2.13 22.00 13.90 1.62 1.99 7.97 22.90 22.90 1.62
n/a: not available.

 In Table 2 references [22] and [23] used deterministic methods specially devised for this type of problem. References [11, 12, 13,
24] used different implementations of Genetic Algorithms and reference [14] used the Simulated Annealing. While the result from
GEO is not the best, it did performed better than improved implementations of the Simple Genetic Algorithm (References [11, 12,
24]) and got close to the results of the floating point coded GA [13] and the SA [14], which got the best result. All runs found
feasible designs and the average of the best values found on them was 5547.93, with standard deviation of 14.37. The evolution of
the best value found for each GEO run, as a function of the number of evaluations is shown in Figure 5. It can be seen the “anytime
behavior” [2] typical of EAs, i.e., major improvements on the objective function taking place in the beginning of the search.

Figure 5. Best value of the objective function as a function of the number of evaluations, for 20 runs of GEO.

6. Conclusions

The results of this preliminary study indicate that GEO can be a competitive alternative to popular meta-heuristics such as GAs and
SA for discrete structural optimization problems. In fact, GEO has been recently developed and improvements on the algorithm are
an ongoing area of research. Some topics of current investigation are the influence of the variation of τ during the search,
parallelization of the algorithm and hybridization with other methods. A more detailed analysis of the efficiency of GEO in solving
structural optimization problems is also being carried out at the moment.
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