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$EVWUDFW�
The making of Cosmic Microwave Background (CMB) maps consists in reducing a large time-ordered data set of temperatures 
acquired by a telescope into a map of sky temperatures. The CMB map is discretized in pixels according to the resolution of the 
telescope and contains a set of estimated sky temperature derived from the acquired temperatures. CMB maps allow further analysis 
in order to estimate cosmological parameters. The standard method for making CMB maps was developed by the team of the COBE 
satellite. It is based on the least squares approach, and leads to a system of linear equations derived from a vector of acquired 
temperatures and a pointing matrix determined by the telescope scans. A commonly used approach for reducing the computational 
complextity of CMB map making is the ELQ�DYHUDJH method, that consists in averaging the temperatures successively acquired for 
each pixel. This work proposes an innovative approach for CMB map making that is formulated as an implicit inverse problem. The 
associated optimization problem is solved by a simulated annealing algorithm that was parallelized using calls to the MPI (Message 
Passing Interface) communication library. The proposed method was tested using simulated data that corresponds to a 30-day 
acquisition by the BEAST experiment corrupted with gaussian noise. The numerical results (CMB map) are compared to those 
obtained by the ELQ�DYHUDJH method for the same simulated data. It is shown that the proposed CMB method yielded a better quality 
map in a similar processing time.  
.H\ZRUGV:  CMB, simulated annealing, MPI, high performance cluster computing. 
 
 
���,QWURGXFWLRQ�
The making of Cosmic Microwave Background (CMB) maps consists in reducing a large time-ordered data set temperatures 
acquired by a telescope into a map of sky temperatures of the observed region of the sky [1]. The CMB map is discretized in O×� O 
pixels according to the resolution of the telescope and contains a set of estimated sky temperature derived from the acquired 
temperatures. A pointing matrix correlates the measurements to the points of the sky, being defined by  the pointing strategy of the 
instrument. CMB maps are employed to further analysis in order to estimate cosmological parameters that are of great interest in 
Cosmology. 

The map making process constitutes the inverse problem of estimating temperature values from temporal series of noisy 
temperature measurements (TOD). The standard method was developed by the team of the COBE satellite. It is based on the least 
squares approach, and leads to a system of linear equations derived from a vector of acquired temperatures and the pointing matrix. 
Most other methods are derived from this method, as described by Tegmark [4]. A very common approach to reduce the high 
computational complexity of this method is the ELQ�DYHUDJH method, that averages the temperatures successively acquired for each 
pixel. 

A map is composed of pixels that are valued according to the estimated sky temperatures and stored in a vector P that has 
dimension�O�×�O and represents a possible solution. The TOD is stored in a vector of measured temperatures (G) that has dimension V�×�
O�×�O. This vector is correlated to P by a known pointing matrix 3 with dimension�>V×�O×�O@�×�>O×�O@, in a way that O×�O sets of rows of 
this matrix store the measurement of all pixels of the observed region of the sky. Measured temperatures G can be mapped to the sky 
map temperatures P by the following equation: 
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where Q is a O�×� O  vector that expresses the noise contribution. The BEAST experiment scanning strategy implies in a particular 
arrangement for the 3 matrix: in a given L-th row, there is only a unique non zero element in the j-th column with unitary value, that 
corresponds to the observed M-WK�SL[HO��H[SUHVVHG�E\�WKH�.URHQHFNHU�GHOWD�IXQFWLRQ�� �� 
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The standard map making technique employs the generalized least square approach and the noise inverse covariance matrix 1� 	 
  
that is estimated from the observed data. The best candidate solution (map) must minimize the difference between the estimated 
temperature of each pixel and the corresponding measured temperatures of the TOD, as follows: 
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The desired map is then given by the following linear estimator: 
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Given the large amount of data, the inversion of the system in Eq. (4) is computationally heavy, as estimated by Borril [1]. The 

ELQ�DYHUDJH method is used to produce the desired temperature vector without requiring the inversion of the noise covariance matrix 
[12]. This method take advantage of the noise vector being considered to have zero mean: the estimated temperature for each pixel 
would be simply given by the average of its measurements. In a first step, one-hour set of data are pixelwise averaged. In the next 
step, the hourly averages are averaged for each week and, finally, the week averages are averaged for an entire year. The resulting 
vector is then plotted as a CMB map. However, these averages must be weighted by the standard deviation of the V�measurements, 
for each pixel of a particular TOD. The ELQ�DYHUDJH of several days of data is performed as a weighted sum given by: 
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where 
_

[  is the average of the temperature vector and  �is the standard deviation for each pixel L estimated for each of the 1-hour 
data set.  

This work proposes an innovative approach for CMB map making that is formulated as an implicit inverse problem. The 
associated optimization problem is solved by a simulated annealing algorithm (SA) [2] that was parallelized using calls to the MPI 
(Message Passing Interface) communication library. The proposed method was tested using simulated data of the Background 
Emission Anisotropy Scanning Telescope (BEAST) experiment [3,11]. This data is corrupted with gaussian noise and arranged in 1-
hour measurement periods that correspond to the observed region of the sky. During an hour period, each pixel is sampled ������ 
times (V) and the region of the sky has ����� pixels. The simulated data corresponds to a TOD for a 30-day duration. 

The SA is described in the following section, followed by a section of numerical results and a last section with conclusions. 
�
���7KH�LPSOHPHQWDWLRQ�RI�WKH�VLPXODWHG�DQQHDOLQJ�PHWKRG�
Simulate Annealing is a heuristic approach for optimization problems. The name derived from a metallurgy technique involving the 
heating of a material followed by its controlled cooling in order to achieve molecular stability. The heat causes the molecules to 
move from their position through states of energy. The slow cooling increase the probability of reaching a more stable, lower energy 
state in comparison to the initial state. 

The SA algorithm associates an energy to each point of the search space and tries to reach an energy minimum. This energy is 
calculated according to the specific optimization goal of the problem.  The algorithm starts at an arbitrary point of the search space. 
At every step, it randomly chooses a neighboring point and moves to that point according to a certain probability. This probability is 
a function of the energy difference between the two points and a global time-dependent parameter defined as the temperature of the 
system.  

The pseudo-code listed in figure 1 performs the simulated annealing algorithm[14] starting from an initial state S0  and initial 
temperature T0. The QHZVWDWH function provides a move to a new state 6 �  with a new temperature 7i. The REMHFWLYH function then 
computes the new energy ( � . for the state 6i. The ILWSURE function returns a probability at which a transition to a state of higher energy  
takes place. The VFKHGXOH function returns a new temperature at each iteration provided by a counter of the annealing schedule. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Pseudo-code of the simulated annealing algorithm 
 
 
The above pseudo-code denotes an initial energy state E0 at temperature T0 . A random perturbation is applied altering its energy 
state to E1. If this energy state is lower the transition is accepted. If it is higher, it might be accepted or not according to a probability 
function. The change of energy from E0 to E1 is performed by the ILWSURS function and the probability of acceptance of the new state 
is given by the Boltzmann probability distribution[15]: 
 

Initialize(S0,T0) 
 
E := objective(S0) 
i := 0 
 
while not stop_condition 

 
Si  := newstate(S,T) 
Ei  := objective(Si) 
If [Ei < E] or [random() < fitprob(E , T)] 
S := Si 

E := Ei 

T := schedule(T , i) 
i : i + 1 
 
end while 
end program 
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A random number in the range [0 < r < 1] is generated by the UDQGRP function and compared to S. If it is greater, the new state is 
accepted. In the scheme known as fast simulated annealing algorithm, it is employed the Cauchy-Lorentz distribution [16]. 

SA algorithms may be improved by including a re-annealing phase. This phase occurs when the evaluation of the objective 
function remains unchanged for a chosen number of iterations. As the algorithm stabilizes, i.e. converges to an optimal solution, a 
perturbation is applied to the solution. In order to calculate the perturbation, the standard deviation of the last candidate solution is 
evaluated and used as a correction factor to all elements of this solution. The new solution is denoted by . The standard deviation of 
the solution is given by: 
 

��� [ µα −=   where  �� �=µ                                                                               (7) 

 
where [ represents the temperature vector sampled (candidate solution)  for each pixel L.  

In the SA of this work, the Boltzmann distribution was replaced by the Cauchy-Lorentz distribution. The SA was tested without 
and with re-annealing. In the last case, the perturbed solution� �LV�WKHQ�FRUUHFWHG�XVLQJ�DQ�HPSLULFDO��IDFWRU�(in this work, taken as 0.4) 
for each pixel, as follows: 
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In general, SA algorithms employ a randomly generated initial guess. The SA of this work was also tested using an initial guess  
obtained in a different way: sampling values from the TOD. The VWRSBFRQGLWLRQ in a SA algorithm can be given by a limit number of 
iterations or when the error decreases below a given threshold. In this case, a limit number of iterations was adopted. In addition, this 
SA was parallelized by means of calls to the Message Passing Interface (MPI) communication library in order to be executed in a 
distributed memory parallel machine.  
 
���1XPHULFDO�UHVXOWV�ZLWK�VLPXODWHG�GDWD�
In order to generate the simulated data, a full sky map was created using the SYNFAST routine of the HEALPIX package [17]. A 
smaller patch with 8,000 pixels was selected for the tests and corrupted with white Gaussian noise in a way to obtain a signal-to-
noise ratio of 0.1. Each simulated TOD series is composed of 20,000 temperature values for each pixel, representing an one hour data 
acquisition. Figure 1 shows the first 50 values of temperatures of a TOD for a given pixel with and without noise. 

 
 

 
Figure 1. Simulated temperature and noise values. 

�
Initially, the SA method was tested for map making using a random initial guess solution. Figure 2 shows  the convergence of the 

SA for this case using a set of 30 TODs, each with 8,000 pixels and 20,000 values for each one, in order to represent a 30-day 
acquisition period of a given region of the sky. It can be noted that more than 100 iterations of the SA were required to reach 
convergence. On the other hand, Figure 3 shows the convergence when the initial guess is obtained by sampling values for each pixel 
from different measurements in the TOD. The number of required iterations decreased to 40. It is interesting to note that the SA is 
faster using this scheme to generate the initial candidate solution than in the case of using a randomly generated one. 
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Figure 2. Convergence of the SA using a random vector as initial guess.  
 

 
�

Figure 3. Convergence of the SA using sampled measurements as initial guess. 
�

The inflexion at the 40th iteration shown in Figure 3  is due to the re-annealing phase in the SA process, that is triggered after 10 
iterations with no improvement of the solution. After the perturbation of the candidate solution, the objective function start to 
decrease again, until the iteration limit is reached. Figure 4 shows a comparison of the standard deviations of the solution vector 
obtained for the two methods (the standard ELQ�DYHUDJH method and the proposed SA method), only for the first 100 pixels. However, 
this comparison is similar if performed for the rest of the 8,000 pixels. 

 

 
 

Figure 4. Temperature differences between the exact sand estimated values for the ELQ�DYHUDJH and the proposed method employing 
SA with and without re-annealing. 
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The quality of the results was evaluated by means of the Pearson (coefficient) correlation and standard deviation from the exact 
solution for the solutions obtained by the ELQ�DYHUDJH and the proposed method, as shown in Table 1. 
 

Table 1. Standard deviation, correlation and execution time for the proposed and the ELQ�DYHUDJH method. 

$OJRULWKP� 6WDQGDUG�
'HYLDWLRQ� &RUUHODWLRQ� ([HFXWLRQ�

7LPH��V��
         SA Cauchy-Lorentz 

without re-annealing 
0.200 0.999 201 

SA Cauchy-Lorentz 

with re-annealing 
0.150 0.999 122 

%LQ�DYHUDJH� 0.290 0.995 110 

 
�
All tests of the proposed method were performed using a version parallel of the SA and executed in a distributed memory parallel 

machine, a cluster of 16 PC’s with Pentium III 800 MHz processor, 256 MB of memory per node and a Fast Ethernet interconnection 
network. 
�
���&RQFOXVLRQV�
�

The observations of the CMB are the main experimental evidence that give support to the standard cosmological model. 
Instruments are employed to measure the temperature associated with the CMB in different regions of the sky. These data are 
temporal series of temperature measurements contaminated with noise. The CMB maps are a graphical representation of the 
temperatures estimated for each pixel from the stored measurements. The CMB map making requires to solve the inverse problem of 
estimating the temperatures for each pixel. 

Currently, there are some analytical methods to make CBM maps that are derived from the least squares method. These methods 
deal with matrices that cannot be easily inverted, which cause a high processing cost due to the high number of pixels and 
temperature measurements. A common simplification for this problem is the ELQ�DYHUDJH method, which is based on computations of 
arithmetic averages of the temperatures for each pixel. The ELQ�DYHUDJH method yields maps with good quality, but it loses some 
accuracy since it is based on an extensive reduction (summing up) of the temperature measurents.  

This work proposes a new method for CMB map production that employs an implicit approach for its associated inverse problem. 
This inverse problem is formulated as an optimization problem that is solved by a stochastic algorithm, the Simulated Annealing 
method. One of the key benefits of this approach is the possibility to produce temperature estimations using the complete data set, 
which improves the map quality substantially. 

Numerical results were compared with a standard ELQ�DYHUDJH method for simulated data that corresponds to a particular TOD 
series for a 30-day period. Simulated data corresponds to the BEAST experiment and was corrupted with white (gaussian) noise, 
presenting signal-to-noise ratio of 0.1. The quality of the results was evaluated by means of the Pearson (coefficient) correlation and 
standard deviation from the exact solution. The ELQ�DYHUDJH method presented correlation of 0.995 and standard deviation of 0.290.  

The SA algorithm without re-annealing presented correlation of 0.999 and standard deviation of 0.200, whereas the SA algorithm 
with re-annealing presented correlation of 0.999 and standard deviation of 0.150.  The processing cost of the SA algorithm with re-
annealing is also competitive with the ELQ�DYHUDJH by a margin in the order of 10% in terms of execution times. It shall be noted that 
the ELQ�DYHUDJH method was executed sequentially, while in the proposed method the SA was parallelized. 

The quality of the solution obtained with the new method is superior to the one obtained with the ELQ� DYHUDJH at a similar 
processing cost. Finally, it is important to note that the quality of the solution obtained with the new approach is better than the 
precision of the measurement instrument. As a result, the proposed method can be employed successfully with data that will be 
available in a new generation of experiments. 
�
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