Proceedings of XXXVII Brazilian Conference of Operational Research (SBPO), Gramado, RS, Brazil, 27" to
30™ September 2005

ON SPECIFYING COMPLEX SYSTEMS THROUGH STOCHASTIC
STATECHARTS FOR PERFORMANCE ANALYSIS

Carlos Renato Lisboa Francés'
Nandamudi Lankalapalli Vijaykumar®
Marcos José Santana®
Solon Venéncio de Carvalho®
Regina Helena Carlucci Santana’®

'Departamento de Engenharia Elétrica
Universidade Federal do Para
Belém, PA
rfrances@ufpa.br

Laboratério Associado de Computagdo e Matematica Aplicada — LAC
Instituto Nacional de Pesquisas Espaciais - INPE
Sao José dos Campos, SP
{solon, vijay}@lac.inpe.br

*Instituto de Ciéncias de Matemética e de Computagio — ICMC
Universidade de Sao Paulo — USP
Sao Carlos, SP
{mjs, rcs}@icmc.sc.usp.br

Abstract

Performance evaluation of complex systems is an essential issue nowadays. Evaluation may be obtained from
both simulation and analytical approaches. However, one of the present important topics is towards the
specification of complex systems which are reactive by nature. Specification techniques include state-
transition diagrams, queueing networks, Petri nets and recently Statecharts have been introduced as another
approach to represent complex systems and obtain performance analysis based on analytical methods. The
paper discussed here is also based on Statecharts representation by providing stochastic features to the
specification technique. The idea is to associate the specification technique to a solution that generates
performance measures. Simulation solution is commented in a case study of a distributed programming
environment based on PVM (Parallel Virtual Machine).

Key words: Performance models, Statecharts specification, Analytical Approach, Markov chains, Simulation

1. Introduction

In many a situation while evaluating a system, decision-makers have to predict the system
saturation so that it is possible to determine the best cost effective means to avoid it or at least delay
this saturation as much as possible. One must have a notion of how the system behaves both in best
and worst cases. This is generally provided by the expertise of the system administrator. Another
alternative is to use performance evaluation techniques [Jain, 1991]. These techniques can be
classified into two main categories, which are measuring and modeling. Usually, measurements,
benchmarking and prototyping fall under the category of measuring. These techniques are very
useful to be applied on systems that have already been built and they can provide accurate
information for analyzing their performance.

The second category mentioned above, modeling, can also be used for providing performance
analysis. Modeling is a complex process that starts usually with a high-level specification (either
graphical or non-graphical) and ends up with the presentation of performance measurements. In

Proceedings of XXXVII Brazilian Conference of Operational Research (SBPO), Gramado, RS, Brazil, 27" to
30™ September 2005

order to obtain these measurements, two approaches can be utilized: analytical and simulation
solutions. Analytical approach usually associates the system specification to a mathematical model
such as Markov chains or queuing theory. Simulation approach, on the other hand, is a computer
program that reproduces the system behavior. Figure 1 shows the modeling process and the phases
involved to conduct a performance evaluation.

Specification of Model PN, QN, SC, SD...

v

Parameters of Model

v

720 N

Solution of Model > MC, QT, Simulation

Presentation of PerformanceResults — [Text Files, Graphics...

PN (Petri nets), QN (Queuing Networks), SC (Statecharts), SD (State-transition Diagrams)
p (Probabilities), A (Rates), ¢ (Time)
MC(Markov chains), QT (Queuing Theory).

Figure 1. Phases of a Modeling Process.

Present day models, whose performance is to be evaluated, are complex as they involve parallelism,
synchronization and interdependence of subsystems. They have been called as reactive systems as
they are based on states and events. Dynamics of such systems are observed by change of one state
into another based on responses to stimuli received by external as well as internal means. However,
the main concern is how to describe the behavior of reactive systems in a clear and realistic way and
at the same time maintaining a rigorous formal basis that can be computationally handled [Harel,
1987]. In order to model these systems, ideas of parallelism, resource sharing, synchronization,
interdependence, hierarchy and randomness (random perturbations) are to be considered.

Some graphical techniques (for the purpose of this paper) that are generally associated to stochastic
processes (due to their precise mathematical definition added to the fact that they can be
computationally handled) may be mentioned: Queuing networks [Kleinrock, 1976], Petri nets
[Peterson, 1981], and Statecharts [Harel, 1987], [Vijaykumar, 1999]. The idea of associating
Statecharts to Markov chains in order to obtain performance measurements is discussed in
[Vijaykumar, 1999] and [Vijaykumar et al, 2002].

Usually systems whose performance has to be evaluated have some peculiarities such as
parallelism, communication and hierarchy within the components. Stochastic Statecharts use these
features that already exist in Statecharts and associate the specification to a solution method in order
to obtain performance measures.

In this paper stochastic features are embedded into the original Statecharts in order to make the
specification for performance analysis more convenient. An example of a case study involving
process scheduling in a computer network is explored to illustrate the use of Stochastic Statecharts.

The paper is organized as follows: Section 2 discusses very briefly some main features of
Statecharts and how the events are considered for the purpose of generating steady-state
probabilities through a Markov chain. Section 3 is dedicated to show the syntax and semantics of
Stochastic Statecharts. Section 4 presents a case study on process scheduling in a distributed
environment. Finally the paper ends with conclusions in Section 5.

2. Statecharts Specification
Statecharts are graphical-oriented and are capable of specifying reactive systems. They have been
originally developed to represent and simulate real time systems [Harel, 1987]. Moreover

Proceedings of XXXVII Brazilian Conference of Operational Research (SBPO), Gramado, RS, Brazil, 27" to
30™ September 2005

Statecharts come with a strong formalism [Harel et al., 1987] and [Harel & Politi, 1998] and their
visual appeal along with the potential features enable considering complex logic to represent the
behavior of reactive systems. They are an extension of state-transition diagrams and these diagrams
are very much improved with notions of hierarchy (depth), orthogonality (representation of parallel
activities) and interdependence (broadcast-communication).

States are clustered by means of representing depth. With this feature it is possible to combine a set
of states with common transitions into a macro-state also known as super-state. Super-states are
usually organized before being refined into further sub-states thus enabling a top down approach.
State refinement can be achieved by means of XOR decomposition and AND decomposition. The
former decomposition may be used whenever a encapsulation is required. When a super-state in a
high level of abstraction is active, one (and only one) of its sub-states is indeed active. The latter
approach is used to represent concurrency. In this case when a super-state is active, all of its sub-
states are active. One more type of state can be mentioned that is BASIC which means that there no
refinements from this type of state.

In Statecharts the global state of a given model is referred to as a configuration that is the active
basic states of each orthogonal component. Details of definition of each element as well as the main
features are described in [Harel, 1987], [Harel et al., 1987] , [Harel and Namaad, 1996] and [Harel
and Politi, 1998].

However, a brief discussion of events considered for performance evaluation [Vijaykumar, 1999]
and [Vijaykumar et al, 2002] is in order. Events have been classified into two categories: internal
events and external events. Internal events are those that take zero time when they are enabled.
They are also known as immediate events as the reaction to these take place immediately.
Statecharts have such in-built events: true(condition), false(condition), entered(State), exit(State).
The basic element action as an event that can influence some other orthogonal component is also
considered as an immediate event. This means that whenever an event is associated as action, a
reaction to this event is immediate. External events are stochastic events (where time between their
activation and their occurrences follow a stochastic distribution) that have to be externally
stimulated to yield new configurations. In order to make the association of a Statecharts model with
a Markov chain (which consists of converting the Statecharts specification into a Markov chain),
the only type of events considered are stochastic events. This means that the time between
activation and occurrence of events follows a stochastic distribution. In particular, for Continuous-
Time Markov Chains, this distribution has to be exponential.

3. Stochastic Statecharts — Syntax, Semantics and Templates

In this section, a stochastic formalism to Statecharts is introduced by some points of the original
semantics and syntax proposed in [Harel et al., 1987]. This introduction enables the use of
Statecharts features in performance evaluation [Francés et al, In Press]. More specifically templates
are proposed to be used in specifying queuing systems associating with a possible solution.

3.1. Syntax Modifications

Two main modifications have been added to the original specification: states with exponentially
distributed delays and inclusion of probabilities in a transition. The first modification considers
delays as random variables (interarrival time and service time). Thus a state with delay can be a
source that, for example, generates clients yielding an exponential distribution or a certain server
that grants a service to customers according to an exponential distribution. Figure 2 (a) shows the
graphical notations for two categories of states: immediate states where an activity within it takes
zero time, i.e., a change to another state occurs immediately; states with delay where an activity
takes an exponential time.

The second modification refers to the necessity of associating a probabilistic value for each
possible path followed by a client. This situation forces the customer to opt for a path among

Proceedings of XXXVII Brazilian Conference of Operational Research (SBPO), Gramado, RS, Brazil, 27" to
30™ September 2005

various possibilities. The selection by probability is represented by means of a connector
(represented as a circle and already defined in [Harel, 1987]) with the letter P inside it. Figure 5 (b)
illustrates this aspect.

A
States with Immediate
exponentially States
distributed Delays
(a) (b)

Figure 2. Syntax Adaptations: (a)State with delay and immediate state; (b)Selection for Probability.

Formally, the probabilistic condition is defined as:

e 1 P={py, p2 ..., Pu}, Where P is the set of probabilities associated to the events and p; is a point
within the probability space defined by P... p; € P, with i=1,2,...,n;

e 0<p;s1,Vi=1,2,...,n
[] ?:lpi :1,

Thus, it is assumed that the probability connector < condition connector C ... p; € C (C is the set of
conditions defined by Harel [Harel et al., 1987]).

By extension, if ¢ € C and p; € C, then ev(c) and ev(p;) are events associated to a condition ¢ and
event conditioned to a probability p,, respectively. In order to distinguish the difference between a
probabilistic condition and a regular condition, the notation ev{pi}! is used in place of ev(c),
according to the one proposed in [Vijaykumar, 1999] and implemented in [Vijaykumar et al, In
Press].

3.2. Statecharts Semantics: Steps, Configurations and Micro-configurations

Statecharts semantics have as base a sequence of instants of time {ci} >0, that corresponds to the
rate of execution of the system. In [Harel et al., 1987], a set of time intervals exists defined for step
is I= (6;, 6i+1), where each AG (Gi4+1-0;) represents the elapsed time for determined step i. The system
will react (to events) at the end of each interval 6; — 6,1, presenting a new configuration of states.

An external stimulus, in 6.4, is a triple (I, 6, £), where IT is a set of external primitive events that
occur in I;, 0 is the set of external primitive conditions whose values are true in (G;, Gi+;), and & is a
function determined for the external environment, thus, for a variable v, § (v) = x if the value of v is
X in (0;, 031). Thus, a configuration of system associated with the instant ¢, is a tuple (X, IT, 6, §),
where X is the maximal configuration of states of the root state, and (I, 6, §) is an external stimulus
associated to G;.

A reaction of the system is a pair (Y, IT*), where T is the set of transitions called step, and IT* is a
set of atomic events generated by Y. Informally, a step is a set of transitions that can be enabled and
are induced for external stimulus. It is important to emphasize that all the constant transitions in a
step Y are fired simultaneously.

Another definition of a step is viewed as a sequence of micro-steps, which generates intermediate
configurations (micro-configurations), where each micro-step is contained in Y. In order to clarify
the idea of a micro-step, an example of a basic file server [Francés et al., 2001], shown in Figure 3,
will be used.

Proceedings of XXXVII Brazilian Conference of Operational Research (SBPO), Gramado, RS, Brazil, 27" to
30™ September 2005

The initial global state, the first configuration SC1, is the set of the initial default states. Admitting
that the event jg (generation of jobs) is enabled, the action inc_p (processor queue is increased) is
carried out in the parallel state Proc_Q. Based on this, the next configuration (active basic states of
each orthogonal component) is SC2=(Ready, Busy.Proc Q, Idle.Proc, Idle.Disq Q, Idle.Disk,
Idle.Destination). This particular configuration triggers the so called immediate event (events
automatically generated by the internal logic of Statecharts) tr/not in Idle.Proc_Q] leading to an
intermediate configuration (Ready, Idle.Proc Q, Busy.Proc, Idle.Disk Q, Idle.Disk,
Idle.Destination). This can be considered as a micro-step generating a micro-configuration (an
intermediate configuration). However, this micro-configuration is reacted again and immediately to
the action dec p associated to tr/not in Idle.Proc_Q] generating SC3=(Ready, Busy.Proc Q,
Busy.Proc, Idle.Disk Q, Idle.Disk, Idle.Destination).

T T T

1 1 1 inati

Source I ProcQ ine_p | DiscQ e d H Destination

R =NoN Mol
1 1 1
1 m [Busy Q] 1 [Idle] Busy Q 1
1 1 1
1 1 1
1 1 1
jg/inc_p : dec_p (Q=1) U : dec_d(Q=1) :
1 dec_p(Q>1) dec_d(Q>1)

eos(1-p) / exit

tr[not in (Idle.Proc_Q)] / eos(p)/

dec_p

1

1

1

1

1

1

1

1

: tr[not in (Idle.Disc_Q)] / eos / inc_p
1 dec_d

1

1

|
1

1

1

1

Figure 3. File Server Using Statecharts Representation.

Obs: Where Q is the number of customers in a queue

If all the states are assumed to be immediate there would be no inconsistency between
configurations and micro-configurations. However, one can come up with a situation where the
Busy states of the servers (Proc and Disk) of the model in Figure 3 possess a certain 7, that
effectively represents values of time and, possibly, different values, which are interpreted as an
average of a determined probability distribution (assumed here as exponential). It can still be
imagined that, for the example, Touce > Thusyproc A Tource > Thusy.dise- 1hus, in hypothetical values,
Tsource = 5 u~t-a Tbusypruc =3 ut. and Z}msy.disk =4 u.t.

Under these circumstances, SC1 would continue to be the initial configuration and after executing
event jg and the action inc_p the next configuration SC2 would be (Ready, Busy.Proc_Q, Idle.Proc,
Idle.Disq_Q, Idle.Disk, Idle.Destination). Due to the reaction to the immediate event tr/not in
(Idle_ Proc_Q)] SC3 would be (Ready, Idle.Proc Q, Busy.Proc, Idle.Disk Q, Idle.Disk,
Idle.Destination). However, configuration SC4 already would generate a structural conflict of which
would be the responsible event for going off the micro-steps that compose SC4. If the transition that
contains eos is enable, then the system will be able to reach two possible configurations SC4: (1) if
probability p is admitted, then SC4 will be (Ready, Idle.Proc_Q, Idle.Proc, Busy.Disk Q, Idle.Disk,
Idle.Destination); (2) if the probability /-p is admitted, then SC4 will be (Ready, Idle.Proc_Q,
Idle.Proc, Idle.Disk _Q, Idle.Disk, Out_FS). Moreover, if the qualified transition will be the one that
contains the event jg, then configuration SC4 would be (Ready, Busy.Proc Q, Busy.Proc,
Idle.Disk_Q, Idle.Disk, Idle.Destination).

Proceedings of XXXVII Brazilian Conference of Operational Research (SBPO), Gramado, RS, Brazil, 27" to
30™ September 2005

One way to maintain consistency for successor configurations is by adopting a timeline and timers
in each state that has an associated delay. Thus, the choice would be conditional to the least elapsed
time (associated to a state) to qualify for an immediate transition.

3.3. Redefinition of Steps and Configurations to Stochastic Statecharts

This section introduces the idea of time in steps and configurations (dynamics) of
Statecharts. As defined in [Harel & Politi.,, 1998], a system is non-deterministic in a given
Statecharts configuration (SC) if it has two possible reactions (Y, I1;*) and (Y, I1,*), such that IT*
#IL*or T Y5,

Thus, in Stochastic Statecharts, a configuration and a step have one interpretation in case all its
states are immediate, and another interpretation if states are associated with delays. An extension of
the original definitions is required to reach the temporal features of the Statecharts.

Definition la: a state is considered with delay when a variable Ti exists, which when evaluated it
determines:

e The mean time between arrivals of customers, in case a state is a generating source of these
customers (Source). It is assumed that the inter-arrival times are exponentially distributed;

e The mean service time to attend the customers, in case a state is a server (in its Busy state). It is
assumed that the service times are exponentially distributed.

Definition 2a: a state is considered immediate when its delay is considered zero (ti = 0).

Definition 3a: The time (ci+1) of the next reachable configuration SC = (X, II, 6, &) obeys the
following premises:

e The variable evaluated in & is Ti, where 7i is a delay associated with a state si, with i=1.., n;

* min(Ti) is the function that indicates the least amount of time of delay in a configuration SC;j,
with j=1.., n;

e The time spent in each step is TYj = TYj-1 + min(ti), with j=1.., n. The time tYj is equal to the
final time of a configuration SCi or to the initial time of a configuration SCi+1;

e Ifj=1, first step, then TYj = min(7i), therefore tYj-1 = 0;

e Tirest = {Ti} - min(ti), V Ti # min(ti), where Ti.rest is the remainder of time of delay of a state
that it surpasses for the next step;

n

2.

e ttotal= /7! 1Yj;
e V{1i} - {min(ti)}, Ti :=Ti.rest, to end of each step;
e [f7i = min(ti), then ti.rest= 0 and 7i in the following step starts with value 0.

Definition 4a: a selection for probability takes the system to different reactions (Y1, IT*1), (Y2,
I1*2), ..., (Yn, IT*n), such that IT*1 #I1*2 # ... #[1*n or Y1 # Y2 #... # 'n.

Definition 5a: if, in a Statecharts, its configurations and times of its steps are determined by
definitions 1 to 4, then this Statecharts is defined to be Stochastic.

Using the example of Figure 3 and based on the notation extended for the random vision (Figure 4),
with the hypothetical values tsource = 5 u.t., Tbusy.proc = 3 u.t. and tbusy.proc = 4 u.t, it is
possible to trace a timeline to determine the time of each step, that is the beginning and the end of
each configuration. Moreover, the order that the configurations occur can be determined.

Proceedings of XXXVII Brazilian Conference of Operational Research (SBPO), Gramado, RS, Brazil, 27" to
30™ September 2005

Proc_Q

inc_p
inc
. _P

T
1
I
I
1
I
1
I
1
I
1
1
I

f Destination \
Source

dec_p(Q=1) U

dec_p (Q>1)

)

U U U

tr[not in (Idle.Proc_Q)] /
dec_p

tr[not in (Idle.Disc_Q)] /
dec_d

eos / inc_p

[~

Busy T Busy T
€os

Figure 4. File Server and their States with Associated Delays.

SC1 is the initial configuration, i.e., it presents the entry to the system in the Source state (a

state with delay of 5 u.t.), and other initial states of other parallel components. SC2 is the successor
configuration, and it is a function of the first one, in relation to the time. If Source state is active, the
system waits for 5 u.t. until the first customer is generated (event jg). After 5 u.t., step 1 is
completed with the execution of the action inc_p (in Proc_Q), taking to Busy.Proc_Q. Now, SC3
qualifies for an immediate transition through event tr/not in(ldle.Proc_(Q)] reaching Busy.Proc, and
simultaneously reaches Ready (in Source) through jg. The time of the step and the next
configuration will be determined by previously described functions (in accordance with the
stochastic vision), in the following way (being T1=Touce: %= Tousy.proce T= Tousy. Disk):

Time of step 1 iS 7y} = MiNps01 (Towee) = 5, therefore it only has a state with delay (Source);
minpassoZ (Tsource: Tbusypruc’) = (59 3) = 3,

Time of step 2 is 7y, = 7y; + min(7,) = 72 = 5 + min(5, 3) = 8, or either, the next step starts
in 8 u.t.;

The time that surpasses the time of step 2 for different states that have the minimum time is
Tiresto = T - MIN(T) = Tjresto = T - MIN(7;,) = 5 - 3 =2, that is, the time that it surpasses step 2
for step 3 is of 2 u.t. in the Source state;

When step 2 is to complete 8 u.t. (to its ending), then V {7} - {min(%)}, G =7 s, meaning that
the states that had not completed their respective delay in one determined step, start the next
one with its equal times to the remainder of the previous step. For the example, 7} =7 .5 = 2.
Figure 5 presents the timeline, with the times of each step, in accordance with the gotten values
previously.

Beg Endof SC1 Boginning Endof SC2 Boginning End of SC3
of SC2

0 5 1 15 20
‘ s /
L1l Ll | [Ll 1| Ll |
Time

1
o

Figure 5. Timeline with Configurations and Steps.

Proceedings of XXXVII Brazilian Conference of Operational Research (SBPO), Gramado, RS, Brazil, 27" to
30™ September 2005

The temporal values for SC3 are calculated in the following way:
o minstepZ (Tsource: 7'-busyDisk) = (29 4) = 27

e Time of step 3 is 7y; = Ty» T min(7;, %3) = 73 = 8§ + min(2, 4) = 10, that is, the next step starts in
10 u.t.;

The time that surpasses the time of step 3 for different states that have the minimum time is 7 ;o5 =
{7} -min(7%) = T = % - min(7,) =4 - 2 = 2, that is, the time that it surpasses of step 3 for step
4 is of 2 u.t. in the Busy.Disk state. To proceed admitting the previous premises, some
considerations must be established. First, it is important to clarify where it finds the random
character of the specification and the admitted functions. The randomness is intrinsic to the
distributions of generation and attendance to the customer, therefore they are these distributions that
generate the rhythms of arrivals and of service (variables that serve of input for the solution of the
system). The definite functions as premises warrant that the events can keep the order waited for a
generic system of queues, what does not harm in nothing the random approach.

In order to represent queuing systems there is a general agreement to use certain standards to
describe states and events. This is exactly the objective of the following section in which some
templates are provided to represent features (states and standard events) of queuing systems to be
used while specifying a given model in Statecharts.

4. Case study: Modeling of the Scheduling of Processes in a Distributed Environment

This section presents a case study, involving distributed programming and its mechanisms used for
scheduling processes, that constitutes an area where modeling can be seen as an attractive aid. More
specifically, the experiment carried out involves the allocation of processes of a certain application
onto distributed processing elements, using a message passing environment and its respective
methods of scheduling. Typical situations of distributed programming and scheduling of processes
constitute interesting cases of study, due to the inherent complexity of the problem.

The environment considered for the experiment is composed of five servers. The first one (the PVM
server) is responsible for the activation of the processes in the servers lasdix, lasdpc08, lasdpc10
and lasdpcl1. Figure 6 is the representation based on Stochastic Statecharts. There is no external
source for customer generation as the model is a closed one. All customers are generated by a server
embedded in the system (actually PVM generates all the considered 400 parallel processes). The
generation of processes takes place when PVM is invoked, considering that it does not have other
processes in its queues (event 7 [in (Idle.PVM_Q)]); PVM returns to the normal course of the
application code (event cg, in the state Code) after receiving a feedback by the application.

Proceedings of XXXVII Brazilian Conference of Operational Research (SBPO), Gramado, RS, Brazil, 27" to
30™ September 2005

ta1}/ ine_py

PVM_Q PVYM

{q3}/ inc_p:
. tr{ not in (Idle.PYM_Q)| /

dec_d
{q4)/ inc_p,

tr[in (Idle.PVM_Q)|

i pvm dec_pvm

Lasdpc08 Lasdpc10 Lasdpcll

trin (dle.P1_Q)] / cos / inc_pvm cos /inc_pvm
dec_py

Busy 13579

o] in (Idle.P2_Q)] / eos/inc_pvm trlin (dle.P3_Q)] /
dec_p; dec_ps

Busy 8270

cos /inc_pvm trlin (Idle.P4_Q)] /
dec_ps

Busy 136.67

Figure 6. Specification of the PVM Model in Stochastic Statecharts.

In order to illustrate the difference in specification, the same model is represented by using
Generalized Stochastic Petri Nets (GSPN) [Chiola et al, 1993] and it is shown in Figure 7.

HQueuedasdll

Quevelasd1 D

Quswis-pym t1

Free-lasd0g
Queue-lasdds 1
Busyasd0g
Busy-pvm
Free-lasdiz
1z Queue-lasd 17
Busp-lasdi

Figure 7. Specification of the PVM Model in GSPN.

Proceedings of XXXVII Brazilian Conference of Operational Research (SBPO), Gramado, RS, Brazil, 27" to
30™ September 2005

The parameters adopted for the model presented in Figure 6 were obtained from the system
described in Table I.

TABLE 1. Description of the Instrumented Environment.

Machine Processor RAM HD Network Interface Card SO
lasdix Pentium MMX 200MHz 32MB | 4GB TrendNET 10/100 Linux 2.2.16-13cl
lasdpc08 Pentium IT 400 MHz 64MB | 13GB | TrendNET 10/100 Linux 2.2.16-13cl
lasdpcl0 Pentium [MMX 233 MHz | 64MB | 12GB | TrendNET 10/100 Linux 2.2.16-13cl
lasdpel1 Pentium MMX 200MHz 32MB | 3GB TrendNET 10/100 Linux 2.2.16-13cl

The message passing environment [McBryan, 1994] adopted is the PVM - Parallel Virtual Machine
[Beguelin, 1994], which is a software package that allows the creation of a virtual parallel machine
on a network of heterogeneous computers, emulating a parallel computer. The version of the PVM
used in the experiment is the PVM 3.4.2.

The application comprises a program to sort a vector of 300 thousand positions, using the quick-sort
algorithm and is built using the SPMD (Single Program Multiple Data) paradigm, in which a master
process sends data to the slave processes, that apply the same program to the data sets received.

In order to obtain the mean service times, the function gettimeofday of C language has been used at
the beginning and at the end of each service of customers. The PVM server runs on the lasdpc08
machine. The other servers are running on the machines with the same name. One hundred
processes were generated to be handled by each machine. These processes were scheduled through
the standard round-robin mechanism of PVM. The times collected were clustered into classes and
the corresponding histograms were generated. Each sample describes an exponential distribution
shifted from the origin. The mean service times (in milliseconds) for each server are shown in Table
II.

TABLE II. Mean Service Times.

Server Mean Times (ms)
PVM 1.53686
lasdix 135.7939
lasdpc08 31.32981
lasdpc10 82.705
lasdpcll 136.6733

The data from Table II shows that PVM presents the lowest time and this is due to the fact that this
software basically routes tasks among the processors. Furthermore, processing time values are
directly related to the computational power of the processors, which is reasonable. For the first
experiment, all the machine were considered in the same way and the probability of each machine
being chosen by PVM is the same (25%). The data from Table III shows that similar values were
obtained from the simulations (smpl and GSPN) and the analytical solutions. On the other hand, the
utilization of the different servers shows that the computer with higher computing power (lasdpc08)
was the one that was less used, thus leading to overload other machines.

A new simulation was performed considering an associated performance index for each machine.
Thus parameters considered were: lasdix = 1.01 x lasdpc11; lasdpc08 = 4.35 x lasdpcl1; lasdpc10 =
1.67 x lasdpcl1. From these relations, new weighted probabilities for the powers of machines were
established.

Proceedings of XXXVII Brazilian Conference of Operational Research (SBPO), Gramado, RS, Brazil, 27" to
30™ September 2005

From the obtained probabilities, the replications of the simulation for one hundred million units
with fifteen smpl seeds were executed again. The results of the weighted simulation and equally
probable simulation are synthesized in Table IV. By observing Table IV, it can be inferred that it
has a higher use of the available resources in the system. The utilization was more balanced in all
the machines. About half of the processes are directed to lasdpc08, due to the fact that this machine
has a higher computational power.

TABLE III. Results Obtained for Analytical and Simulation Solutions, where U (Utilization).

Server U(MVA) U (smpl) U (GSPN)
PVM 0.044831 0.0447 =£0,00002837 0.045800 £ 0.008400
lasdix 0.990303 0.9874 £0,00040794 0.988326 +0.035238
lasdpc08 0.228479 0.2284 £0,00005365 0.223423 +£0.011646
lasdpc10 0.603142 0.6012 £0,00038534 0.580202 +0.024037
lasdpc11 0.996716 0.9942 £0,00021510 0.991806 +0.035343

TABLE IV. Results from the Standard Scheduling (1) and the Alternative Scheduling (2)

Simulations.
Server L¢)) UQ)
PVM 0.0447 +0,00002837 0.0836 +0,00522877
lasdix 0.9880 +0,00040794 0.9378 +0,10364316
lasdpc08 0.2285 +0,00005365 0.9536 +0,00649479
lasdpcl0 0.6010 +0,00038534 0.9738 +0,00467259
lasdpcl 1 0.9939 +0,00021510 0.9229 +0,00533046

5. Final Remarks

Due to the visual appeal presented by Statecharts in representing complex system behavior, it is
quite a temptation to use this graphical technique in modeling reactive systems for evaluating their
performance. The very first approach towards representing and dealing with performance models
consisted in converting the Statecharts representation into a Markov chain in which an analytical
solution was used to generate the performance measurements. This paper described a new approach
for system modeling as an extension to Statecharts. The proposed extension comprises Stochastic
Statecharts and they follow very closely the specifications proposed by Harel for the standard
Statecharts. The idea of time in steps and configurations are introduced.

All developments described in this paper were performed in such a way that the application of both
analytical and simulation techniques to solve the models are possible. In order to demonstrate the
usefulness of the proposed approach, an example considering a file server system (used as a test
bed) and a case study of a distributed application running on a PVM-based virtual computing
environment were presented.

The experiments conducted show that the application of the approaches proposed is quite attractive
and potentially improves the set of modeling strategies available for many research and application
areas involving system performance evaluation.

Furthermore, the approach discussed in this paper extend Statecharts by creating an alternative
modeling technique that retains the potential features of synchronization, parallelism and hierarchy
as well as embedding stochastic features so that performance evaluation can be conducted on
generic specifications.

Proceedings of XXXVII Brazilian Conference of Operational Research (SBPO), Gramado, RS, Brazil, 27" to
30™ September 2005

References

Beguelin, A.. PVM: Parallel Virtual Machine — A User’s Guide and Tutorial for Networked Parallel
Computing. The MIT Press, 1994.

Chiola, G., Marsan M. A., Conte, G. Generalized Stochastic Petri Nets: A Definition at the Net
Level and Its Implications. IEEE Transactions on Software Engineering, vol. 19, n. 2, p. 89-106,
1993.

Francés, C. R. L., Vijaykumar, N. L., Santana, R. H. C., Santana, M. J., Carvalho, S. V.,
Abdurahiman, V. The Use of Analytical and Simulation Solutions with Statecharts for
Performance Evaluation: A Case Study of a File Server Model. In: 2nd IEEE LATIN-
AMERICAN TEST WORKSHOP - LATW2001, Cancun, 2001. Digest of Paper, Cancun,
LATW, p.136 — 14, 2001.

Francés, C.R.L.; Oliveria, E.L.; Costa, J.C.W.A.; Santana, M.J.; Santna, R.H.C.; Bruschi, S.M.;
Vijaykumar, N. L.; Carvalho, S.V. Performance Evaluation based on System Modeling using
Statecharts extensions. Simulation Modelling Practice and Theory. In Press.

Harel, D. Statecharts: a visual formalism for complex systems. Science of Computer Programming,
v. 8,231-274, 1987.

Harel, D.; Pnueli, A.; Schmidt, J.; Sherman, R. On formal semantics of Statecharts. /EEE
Symposium on Logic in Computer Science, Ithaca, USA, 1987

Harel, D.; Namaad, A. The STATEMATE semantics of Statecharts. ACM Transactions on Software
Engineering, v. 5, n. 4, 293-333, 1996

Harel, D.; Politi, M. Modeling Reactive Systems with Statecharts: The Statemate Approach.
McGraw-Hill, New York, USA, 1998

Jain, R. The Art of Computer Systems Performance Analysis — Tecnichniques for Experimental
Design, Measurement, Simulation e Modeling. s.I, John Wiley & Sons, Inc, 1991.

Kleinrock, L. Queuing systems. Vol. 2: Computer Applications, John Wiley & Sons, 1976.

Mcbryan, O. A. A Overview of Message Passing Environments. Parallel Computing, v. 20, p. 417-
444,1994.

Peterson, J.L. Petri Nets: an Introduction. s.l., Prentice Hall, Inc., 1981.

Vijaykumar, N.L. Statecharts: Their use in specifying and dealing with Performance Models. ITA,
Sdo José dos Campos, Brasil, 1999, (Ph.D. Thesis).

Vijaykumar, N. L., Carvalho, S.V. & Abdurahiman, V. (2002). On proposing Statecharts to specify
Performance Models. International Transactions in Operational Research (ITOR), 9(3), 321-
336.

Vijaykumar, N. L.; Carvalho, S.V.; Abdurahiman, V.; Andrade, V.M.B. Introducing probabilities in
Statecharts to specify reactive systems for Performance Analysis, Computers & Operations
Research. In Press

