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The problem of magnon instability in an electron-magnon system is studied in the presence of a static uniform
magnetic field. It is found that the magnons may become unstable when certain threshold values for the drift
velocity and the magnetic field are exceeded. However, even after the thresholds are exceeded, it is predicted
that there exist alternate bands of the magnetic field, in which the magnons are unstable in one band, stable in
the next band, unstable again in the following band, etc. These alternate bands have their origin in the

discreteness of the Landau levels of the electrons.

L INTRODUCTION

In recent papers'™ the possibility of spin-wave
amplification has been discussed in ferromagnetic
semiconductors when an external dc electric field
is applied. Originally this problem was investi-
gated by Akhiezer et ¢l® and Vural.® According
to their theories there is a net gain for the spin
wave when a dc electric field is applied such that
the drift velocity of the carriers exceeds the phase
velocity of the spin wave in complete analogy with
the sound amplification in semiconductors.” On
the other hand, the recent development of high-
mobility ferromagnetic semiconductors has en-
hanced the possibility of observing such effect.
Despite this fact no direct observation of ampli-
fication seems to have been made up to date.
Recent measurements of magnetoresistance® and
microwave transmission® only qualitatively indi-
cate the existence of spin-wave amplification. Al-
though the earlier papers!™ were directed more
towards explaining the measurements of Balberg
and Pinch,® the suggestion has also been made in
these previous papers'™ of another alternative
observation of spin-wave amplification in parallel
pumping experiments'®!* in which the sample is
subject to an additional dc electric field. The
amplification would, in this case, be observed
through a distortion of the “butterfly curve,” in-
dicating a decrease in the effective linewidth.

In Refs. 1-4, however, the amplification coef-
ficient found is essentially independent of the ex-
ternal magnetic field. On the other hand, it is
natural to expect that external fields changing the
spectrum and the occupation number of the electron
states will influence the spectrum and damping of
the spin waves. In the case of weak applied mag-
netic field the electron motion is not affected at
all and the amplification coefficient should be that
of the previous papers.'™ However, in the op-
posite case of strong magnetic field, the electron
motion is considerably affected and one should ex-
pect the magnon growth rate to depend on the field.
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Indeed, we shall find that, at temperatures

kyT < €p, HW,, where € and w, denote the Fermi
energy and the electron cyclotron frequency, re-
spectively, the magnons may become alternately
unstable and stable as the magnetic field strength
is varied, i.e., there exist bands of the magnetic
field in which the magnons are unstable in one
band, stable in the next band, unstable again in

. the following band, etc. These alternate bands

have their origin in the discreteness of the Landau
levels of the electron.

The existence of well-defined Landau levels
depends of course on whether w, 7 >1 can be
realized. Here 7 is the electron scattering rate.
This in turn entails in restricting our choice to
high-mobility materials. In general the 3d tran-
sition-metal compounds show a low Hall mobility
(1-10 cm?/V sec) with the exception of the chro-
mium chalcogenide spinels like, for instance,
CdCr,Se, doped with Ag (~10* cm?/V sec). 1215
The relatively high mobility of these compounds
has been associated with their covalent charac-
ter.% We shall make contact with this point
again in Sec. III where it is suggested that in fact
CdCr,Se, is the most suitable ferromagnetic semi-
conductor to perform the experiments.

Although this problem of magnon instability is
itself of sufficient interest for an independent in-
vestigation, particularly in the low-temperature
regions, our main motivation is to find out not only
the changes induced by the strong field but also if
the condition of a net growth of the magnon pop-
ulation would be enhanced by increasing the field.

Our model for a magnetic semiconductor is that
of an interacting conductor-electron-localized-
moment system,!®!" The carriers and the local-
ized moments are interacting by their exchange
interaction which is taken to have the familiar s-d
contact form.

In Sec. II, we develop the Hamiltonian for the
electron-magnon system and set up a kinetic
equation for the magnon distribution function which
is then linearized to establish the criteria for the
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onset of the magnon instability. In Sec. III, the

growth rate of the magnon population is derived,

and a summary and conclusions are given in Sec.
1v.

II. FORMULATION

The total Hamiltonian of the system will com-
prise the conduction-electron part, the exchange-
coupled-local-moment part, and the interaction
term. We assume that the localized moments
experience a ferromagnetic exchange interaction
only with their Z nearest neighbors, and consider
only the exchange part of the conduction-electron—
local-moment interaction, which will be repre-
sented by a spin-dependent contact potential. Also,
since we are interested in studying the system
below the Curie temperature, we shall introduce
the magnon variables straightway. Finally, the
effect of the external magnetic field and the dc
electric field are taken into account by replacing
the usual parabolic energy by the Landau levels, 8
and using a drifted distribution function!® as the
carrier distribution, respectively. Thus, in the
second quantization formalism, the total Hamil-
tonian is given by!¢~18

= A
JC'_Z EauchCaU +Zﬁwkbk bk
ao ¥

+ Mgy Z ((alem‘;

aYelic b, +c.c.) . (1)

oo’k
Here
€po= 1+ 3w, + p2/2m — (Fw ,+ IS) o (2)
and
_ 1 ikl
Tawy=gugH+2ZIS (1 _ZZe ) (3)
6

denote the electron and magnon energies, respec-
tively, and

My=—-J(S/2N)Y3, w,=eH/mc .

J is the exchange parameter between the localized
spin and the conduction electron, N is the number
of magnetic atoms of ionic g value g, [y is the
Bohr magneton, H is the external magnetic field,
assumed along the z direction, I is the exchange
constant beiiween the Z nearest-neighbor localized
spins, and 0 is a vector to a nearest neighbor.

C4o and ¢!, are the usual annihilation and creation
operators for an electron in the state a=n,p,,p,
with spin o in the Landau representation.® Here,
o=+1 for up conduction-electron moments and

o= -1 for down moments. The b, and b} are the
magnon annihilation and creation operators. In
arriving at Egs. (1)—(3) we have kept only terms
bilinear in the magnon operators.
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By using the Golden rule one can get the transi-
tion probability per unit time for the emission and
absorption of a magnon of wave vector & while the
electron goes from an initial state |z, p,,p,) to a
final state |n’,p, - #ik,, p, — Fik,). Once we have the
emission and absorption rates the kinetic equation
for the magnon distribution is readily written as

aN, 2 Per
= Sl

a) PN, +1)

aa

Xf-;o,(l - ;g) —Nkf;a(l _};'I)]
Xﬁ(an. —€,,'—h'wk) N (4)

where N, represents the number of magnons with
wave vector k, a=n,p., D, and a'=n’,p), pi. The
meaning of various terms in Eq. (4) is clear. The
change of the magnon number is a result of the
emission and absorption of magnons by electrons
in all possible states. The first term on the right-
hand side of Eq. (4) arises from the emission
process. The factor (N, +1) accounts for the
presence of N, magnons in the system when the
additional magnon is being emitted. The factor
Fouri(l = F41) represents the probability that the
electron o'V state is occupied and the final elec~
tron at state is empty. Similarly, the second
term on the right-hand side of Eq. (4) arises from
the absorption process, and the factor N,7q.

X(1 - f,+.) again takes care of the boson and fer-
mion statistics. Furthermore, in Eq. (4)

fav= [expB(€n - (hjwc*‘ JS)U
+(1/2m)(p, —mv,f - €x) +1]7,

with €,=(n+ 3)fw,, B=1/ky T is the unperturbed but
shifted electron distribution in a magnetic field,
both the magnetic field and the drift velocity 17,,
being assumed to be parallel to the z axis. As we
have previously mentioned the effect of the de
electric field is supposed to be taken into account
by using the drifted distribution. Strictly speak-
ing, the electron-distribution functions in Eq. (4)
should be the exact, time-dependent functions
F,,(t) and F,..(t) instead of the unperturbed f,
and f,.,. One should then write another equations
of motion governing F,,(f) and F,..(¢) and then
solve them together with Eq. (4). However, to
lowest order in the electron-magnon coupling,
one can approximate F,, by f,..

After some manipulations, Eq. (4) can be re-
written in a more convenient form,

B e VRN, 7' (5)

where the magnon generation rate y(%) is given by
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(k)— MidZKoz’]e“"r & P =Te)

X6(€q,, — €4, — Fiwy) (6)

and ¥’ () is the spontaneous-emission term.

Having reached this point let us now establish
the criterion for the onset of the instability. How-
ever, before we actually do this one notices that
in our discussion so far, we have completely ne-
glected other mechanisms such as multimagnon,
magnon-phonon, ete., which may interact with
magnons and lead to a finite magnon lifetime even
in the absence of electron-magnon interaction.
We may take them into account by introducing a
phenomenological magnon decay rate v(%) due to
other processes than magnon emission and ab-
sorption by electrons. We shall see presently
that the threshold magnetic field for the onset of
the magnon instability becomes finite (rather than
zero) for a finite v(k)

Equation (6) can still be written in a simpler
form by changing p, and p; into p, +mwv, and
ps+muy, respectively. Performing this change
of variables in Eq. {6) one obtains

W)= 2022, 3 (€ 5| 0 [ = o)
[+ %

X5(€al; - €ag - ﬁ(wk - kzvd)) ’ (7)

where
faa= [expB(ﬁao - €F) + 1]-1

is the equilibrium Fermi-Dirac function. In other
words, the effect of the drift velocity is equivalent
to a Doppler shift in the magnon frequency. By
recalling that f(¢’)= f(¢) when ¢’= ¢ it is easy to
see that

y=0 for w,—kw,=0. (8)

Therefore, for a particular magnon wave vector
K the criterion for the onset of the magnon insta-
bility is just the Cerenkov condition

Wp "kzvd<0 ’ (9)

since in this case the magnon population grows ex-
ponentially at a rate given by Eq. (7). Equation
(8) is independent of the existence of an external
magnetic field and is, in fact, the same as the one
found elsewhere,!™ i.e., there is only a thresh-
old value for the drift velocity but no threshold
value for the magnetic field. If, on the other
hand, v{%) is finite, the instability criterion then
becomes

y>v (10)

which generally depends on the magnetic field via

Eq. (7). It is clear from Egs. (7) and (10) that,

in addition to a drift-velocity threshold whose
component in the %2 direction still has to exceed
the magnon phase velocity, there is now also a
magnetic field threshold whose value depends on v.
Finally, it should be mentioned that the exponen-
tial growth behavior as predicted by the linearized
Eq. (5) is valid only at the initial stage after the
onset of the instability. Thereafter, the non-
linear terms which have been neglected so far

will limit the amplitude of the magnon fluctuations.

III. GROWTH RATE

To evaluate y(k) we need to know the quantity
[{a’'le'®*F| 4)|2. Using the Landau wave function!®
it can easily be seen that

o’ e | = 811 g+ D00 pgen g Xarnl®) 5 (11)
where
Xwrnl@) =0l =)'l /01 )g" ™ e [ L0 (q)
+0n' =n)(n!/n' )" "e L7 ™Mg)
+8,, e [ L) F . (12)

Here L¥(x) are the associated Laguerre polyno-
mials, © is the step function

) ’
e(n—n')={1’ n>n
0, n=n'

H

and g =7ik? /2mw,, kb, being the component of the
magnon wave vector k perpendicular to the mag-
netic field.

Substituting Egs. (11) and (2) into Eq. (7), we
obtain

mw  L2M?
NISILCE U S
nn'py

(p +7k)? P2
X(f"',szkz"_f;l'p"')ﬁ(_‘—zWL_z- _27:1

+ (0" =n)iw o+ 2w . + JS) = lw, — :vd)>’ (13)

where the sum over p, has yielded!® a factor
L*mw,/2n%, L being the linear dimension of the
crystal. The 6 function in Eq. (13) determines
the value for p,. Thus, we have

_ VMEm? VMsm©w,
‘)/(k) 2Trh—4,k l ann

[f(n ;p0+ﬁks: 0=_1)"f(n,p0; 0=+1)] ’ )
(14)

where
_Mwg mwc _2m
Po——”“k‘ Pa Wk, (7w, + JS) ,
15
bg=mvy - (15)

" This is the most general expression for the growth
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rate y. The analysis of the above equation is very
complicated for arbitrary k because, in general,
both the #—# and the n—#»' (n##x’) transitions are
possible. However, by making use of the proper-
ties of the Laguerre polynomials,?® Eq. (12) can
be drastically simplified in the case when g <1

or k2 < mw,. Under these conditions (g < 1)

(n+7) (n+7)!

L= 5 oDt Di?

Using this result for L} and comparing the terms
in Eq. (12), it is seen that the n-n' transitions
become unimportant when ¢ <1. In particular,
for spin-wave propagating parallel to field this is
an exact result. Physically this means that when
the momentum transfer 7k, is much smaller than,
the momentum change corresponding to a jump
from one orbit to the next, transitions involving
different orbits are not important. Condition

g <1 is also equivalent to 2, R,< 1 where R,=v,/w,
~ (7/2mw)'? is essentially the radius of the cir-
cular orbit. Accordingly, if we assume

kvp <<w, , (16)

where vy is the Fermi velocity, X,.{g) can be ap-
proximated by §,.,. The next important terms in
Xnty involve transitions between the neighboring
levels (' -n=+1). However, for the special case
of magnon propagating parallel to the field, X,,(g)
is exactly 8,,,. The above condition is well satis-
fied for magnetic semiconductors under possible
experimental conditions as we shall see later on.
For the sake of simplicity in our discussion, we
shall from now on assume that this condition is
satisfied with the result that Eq. (14) then becomes

2 102
Y(k) = %ﬁf[n]q@—?c Z [f(ns Po + ﬁku - 1) "f(n; pO’ + 1)]’
2z n
(7
where p, is now

nk, 2m
—pd— 2 .—hk‘(mc_‘-JS) .

Mwp
kﬂ

If we define two energies

€, =€ -8/ 2m + (w +JS) ,
(18)
&g =& — (po+7ky)%/2m - (hw,+JS) ,

then at 7=0 °K, the nth Landau level contributes
a positive term to the sum over » on the right-
hand side of Eq. (17) if

€4<€, <€y , (19)
it contributes a negative term if
<B < €n < €A ’ (20)

and it contributes nothing otherwise. Thus, at
zero temperature, Eq. (17) becomes

_VMEiw, .
yik) = _L—zm“lk,[ En: 1=0 if eg>¢, (21)
(e g<en<eR)
and
k)= ~ V__T__Mi,,mzwc Do 1=0 if eg<eg, . (22)
2m7% | Ry - - B A
ep<e,<6y)

Hence, v is seen to be proportional to the numbers
of levels which lie between the two limits €, and
€5. We note from Eq. (21) that the criterion for
amplification, €53>¢, reduces to

A€=€5—€,=H(kwy—w,)>0, (23)

which is the same as before,

To see how y(k) depends on the magnitude of the
magnetic field, let us focus our attention on the
magnon instability, Eq. (21), in the following cases.

(i) €4> $7w, and €3> 374w, such that

0<Ae<iw, . (24)

In this case, the above conditions assure us that
there is at most one level #» such that €, <¢,<€p,
i.e.,

E 1={1 for n such that €, <€,<€pg 25)

0 otherwise .

n
Le4<e,<ep]

In Fig. 1, some Landau levels and the limits €,
€z are shown schematically, It is seen in Fig. 1
that when the Landau level, with €,= (n+$)iw,,
lies within the A€ interval but just above €,, the
(# — 1)th level must lie below €4 and the (#+ 1)th
level must lie above €5. If we keep k and ¥, fixed

ENERGY

A€

€=0

FIG. 1. Landau levels and the energies €,, €p (assumed
positive here).
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and vary w, we find that as w, increases, the nth
level gradually rises and eventually leaves the A€
interval when w, has increased by an amount Aw,
=A€/(n+3). At this value of w,, ¥ drops abruptly
from a positive finite value to zero. This rate
remains zero until w, has increased by an amount
Aw,=€4/(+%)m -5 when the (z - 1)th level is
just about to enter the A€ interval, Thus, as long
as Eq. (24) is satisfied, the growth rate y for the
k magnons takes on finite positive values propor-
tional to w, and zeros on alternate bands of the
magnetic field as shown in Fig, 2. Also, as w,
increases, these bands become wider and wider,
These bands are of course due to the discreteness
of the Landau levels. In order to observe this
phenomenon the system has to be kept at low tem-
peratures kgT < 7w, so that the levels are not
smeared by temperature broadening. One also
notices that in this region of w,, the growth rate
becomes independent of the drift velocity, although
the widths of the alternate bands of the magnetic
field still depend on the drift velocity.

(ii) w, is small such that €z, €, > 7w, and
A€ > fiw,. In this case, there will be one or more
levels within A¢, This in turn entails that we will
no longer have regions in which as shown above,
In this case

PORNREL T
7 N ﬁ(;.)c ’
(e 4<6,<eB)

9 being the number of levels in A€, Thus, Eq. (21)
becomes

y(k) = (VM2 m?/2mi |k |) Bgvg — wp) - (26)

That is, the growth rate becomes independent of
w, and is identical to the magnon growth rate in a
weak magnetic field discussed elsewhere, !=*

(iii) w, is large enough such that €,, €5 < 37w,.
In this case y =0 since there will be no levels with-

hw,

in A€, This region of w, follows the alternate
bands region, depicted in Fig, 2. The widths of
the alternate bands become larger and larger as
w, increases until finally the width of the last band
in which ¥ = 0 becomes infinite,

In the cases discussed above, we have implicitly
assumed both €4 and €p to be positive energies,
The cases in which one (or both) of these energies
is (are) negative can be analyzed similarly,

In our discussion of the growth rate y (k) so far
we have ignored the losses of the spin waves v (k)
due to other processes, These can be taken into
account by defining an effective growth rate as
y(k) - v(k). Therefore, even if y(k) is positive
when v, > v there may or may not be an instability,
depending on whether

YRz vik), 27

respectively., Equation (27) determines the mag-
netic field threshold for an actual magnon insta-
bility, It is clear that for case (ii) there is no
magnetic field threshold. Substituting Eq. (21)
for (%) into Eq. (27) one gets

H>H, k) (28)

as the instability criterion for the magnetic field.
The threshold magnetic field H (%) is given by

e N/V
D e o) 29)

H (k)=
Equation (29) indicates that the instability is
more easily achieved in high-mobility materials

(w,T > 1) for relatively small values of k. Of the
existing ferromagnetic semiconductors the best
candidate would be CdCr,Se, doped with Ag for
it has the highest known mobility.%'® To get an
estimate of the magnetic field threshold we take
the following values for the physical parameters
for CACr,Se, doped with Ag¥*5#~%%: - 10-1 erg,
=2, N/V=10® em, p=10* cm®*V-'sec!, €5
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=1.2X 10" erg, ny=10% electrons/cm?®, It turns
out that for £=10° cm! H, is of the order of 52 kG
and for k=107 crp! H, is 520 kG, assuming that
v(k) is typically of the order of 10® sec-! at T near
zero. Hence, in principle, one might observe the
predicted bands as dc fields up to 200 kG can pres-
ently be realized in the laboratory whereas fields

up to 10 G can be obtained using pulsed techniques.

Note that for a field of 100 kG one should observe
well-defined Landau levels in CdCr,Se, as w7 =10.

IV. CONCLUSIONS

It was found in this paper that magnons in an
electron magnon system such as doped ferromag-
netic semiconductors may become unstable when
the drift velocity of the electrons and the static
magnetic field exceed certain threshold values

which are given in Egqs. (23) and (29), respectively.

It was predicted here that there exist some alter-
nate bands of the magnetic field so that magnons
of wave vector K are stable in one band, unstable
in the next band, but stable again in the following
band, etc., while the drift velocity is kept fixed.
The physical origin of these bands is the discrete-
ness of the electron levels in a quantizing mag-
netic field. In order that our prediction be valid,
these discrete Landau levels must not be smeared
by other mechanisms, such as temperature or
collision broadening. This implies that one should
work at very low temperatures, and with high-mo-
bility magnetic semiconductors, like CdCr,Se,.

To observe the magnon instability discussed in
this paper it may be more suitable to perform
either magnetoresistance or microwave trans-

mission experiments. However, due to the even-
tual experimental difficulties of working in the
frequency region of 10''-10'2 sec™ one could al-
ternately perform spin-wave pumping experiments
in antiferromagnetic semiconductors. The reason
for this is that in these materials one of the spin-
wave branches decreases as one increases the ex-
ternal magnetic field. In particular, for fields of
the order of 10*~10° G the spin-wave frequency
lies in the microwave region (X band), and hence
one may observe the predicted bands of amplifica-
tion in parallel pumping experiments as suggested
in Refs. 1-4. Unfortunately, there seems to
exist no antiferromagnetic semiconductor of high
enough mobility which could enable us to actually
observe the Landau levels.

Regarding the magnetoresistance experiments,
one could use the same procedure as that of the
recently reported® measurements of electrical
resistivity and Hall effect on # type EuSe single
crystals in magnetic fields up to 150 kG. This
paper followed the high-magnetic-field studies of
electrical transport in Eu chalcogenides by the
same authors. The Hall mobilities in their EuSe
samples lead to the estimate of #/r~0.02 eV
(u~10% cm®V'isec™). This, in turn, gives
w,r=0.2 for the highest field used in their experi-
ments. In order to observe the Landau levels in
these samples one therefore ought to use quite
high fields, of the order of 10® G, which can only
be obtained by pulsed techniques. On the other
hand, in the case of CdCr,Se, as the mobility is
of about two orders of magnitude larger, one could,
in principle, observe Landau levels using the
presently available high dc fields.
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