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Magnon dispersion in ferromagnetic semiconductors and metals under strong fields
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The effect of strong magnetic fields on the magnon energy renormalization in an electron-magnon system is
discussed. It is shown that under strong fields the magnon dispersion as well as the indirect exchange become
anisotropic.

In a recent paper' we reported on the effect of
strong magnetic fields on the magnon damping in

ferromagnetic semiconductors in connection with
the problem of spin-wave amplification. As ex-
pected, external fields which change the spectrum
and the occupation numbers of the electron states
will influence the spectrum and damping of the
spin waves. In fact, it was found in Ref. 1 that,
at temperatures k~T «e~, &co, where E~ and (d,
denote the Fermi energy and the electron cyclotron
frequency, respectively, there exist bands of mag-
netic field in which the magnons a,re unstable in
one band, stable in the next band, and so on. This
result is completely opposed to that for weak ap-
plied fields 2 ' in which case the amplification co-
efficient is found essentially independent of the
external field. It is a consequence of the discrete-
ness of the Landau levels of the electron states.

In the present paper we report on the effect of
a strong magnetic field on the magnon dispersion
relation, and consequently, on the indirect ex-
change, 8 8

I
Ruderman-Kittel-Kasuya-Yosida

(RKKY) interaction] between the localized spins.
Our model for a magnetic semiconductor and metal
is that of an interacting conduction-electron-
localized-moment system. " Within the frame-
work of this simple model many properties of
ferromagnetic semiconductors'" and metals'
have been at least qualitatively understood. In
order that our predictions be valid the Landau
levels must of course not be smeared out by tem-
perature or collision broadening, i.e. , the con-
dition co, w & 1 must be satisfied, where ~ is the
electron scattering rate. In the "ase of ferro-

magnetic semiconductors this condition entails
restricting our choice to high-mobility materials.
As discussed in Ref. 1, of the existing ferromag-
netic semiconductors the best candidate for pos-
sible high-field studies is CdCr2Se4 doped with Ag
for w, 7 &1, for fields of about 90-100 kG. How-
ever, the results of the present paper are of
little, if any, consequence for ferromagnetic
semiconductors. The reason is that for these
materials the contribution to the magnon dis-
persion relation due to the direct exchange be-
tween the localized spins is usually the dominant
one. In contrast, for ferromagnetic metals'
the direct exchange plays no role. It then follows
that our results are more appropriate to the case
of magnetic metals or of magnetic atoms in a
nonmagnetic metal host lattice.

The total Hamiltonian of the system comprises
the conduction-electron part, the (direct) ex-
change-coupled-local-moment part, and the in-
teraction term. We assume that the localized
moments experience a ferromagnetic exchange
interaction only with their nearest neighbors,
and consider only the exchange part of the con-
duction- electron-local-moment interaction, which
will be represented by a spin-dependent contact
potential. Also, since we are interested in study-
ing the system below the Curie temperature we
shall introduce the magnon variables straightway.
Finally, the effect of the external magnetic field
on the carrier motion is taken into account by re-
placing the usual parabolic energy band by the
Landau levels. Thus, in the second quantization
formalism, the total Hamiltonian is given by" "
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denote the electron and magnon energies, respec-
tively, &d„'

' is the contribution from the direct ex-
change, and &u, =eH/mc. J„is the exchange pa-
rameter between the localized spin and the con-
duction electron, N is the number of magnetic
atoms of ionic g-value g, p, ~ is the Bohr magneton,
H is the external magnetic field assumed along
the e direction, 1 is the (direct) exchange constant,
and a is the lattice spacing. c, (c~,) is the usual
annihilation (creation} operator for a,n electron in
the state o.'(=n, p„, p, ) with spin c in the Landau
representation. Here v=+1 for up conduction-
electron moments, and o = —1 for down moments.
Finally, b~ (b~~) is the magnon annihilation (crea-
tion) operator.

Before continuing it should be noted that we are
assuming that J,~ is independent of the field. This
is justifiable provided the d orbitals are not ex-
plicitly dependent on the field and the s-electron
wave function does not vary much over an ionic
dimension (contact-potential approximation). The
first point requires fields of the order of 10 G as
can be seen from the theory of atoms in strong
magnetic fields. " The second condition requires
(h/m~, ), the cyclotron radius, to be much
larger than the lattice spacing a, i.e. ,

(h/mu, )'~ «a~ B&10 G .
Since the magnetic fields we have in mind are
typically within the safe region of 90-100 kG, it
is reasonable to neglect the field dependence as
well as the more rigorous spatial dependence of
the s-d exchange integral.

The magnon self-energy, from which one obtains
the magnon energy correction and lifetime, may
be evaluated either by the thermodynamics
Green's-function formalism" or by the usual per-
turbation theory. ' '" %e refer to Refs. 14 and 15
for a more detailed discussion. Up to second
order in the coupling of the interaction, using
Eqs. (1)-(3), the corresponding algebraic expres-
sion for the magnon energy correction is

Z (~„%)= Z, + Z, (~, , k)

(4)
where f, is the Fermi distribution function for an
electron in the state I n, o&. We shall use the
step-function approximation for f,. The renor-
malized magnon energy fS(d~ is then determined by
the solution of

self-energy will be neglected. ' This is justified
by the fact that the magnon effective mass
M=h k /2Z(0, k) is much greater than the electron
mass. Furthermore, we shall be mainly con-
cerned with small values of k, and it can be shown
that as k-0 the dynamic susceptibility tends to
the static one.

Now, Z(0, k) may also be related to the RKKY
indirect-exchange theory, ' modified by the pres-
ence of the strong field as follows. In second-
order perturbation theory in the s-4 coupling,
following the steps of the RKKY theory, the ef-
fective exchange coupling between the localized
spins S, and S,. can be written as

J„,(R =R; —R, )

where P, (r) is the Landau wave function. Taking
the Fourier transform of J„,(R) we get

J„,(k) =Q e '"'" J„,(R)

On the other hand, J„,(k) leads to the following
contribution to the magnon dispersion relation:

2SN [Je«(0) —J,q, (k)] = Z(0, k).

It then follows from Eqs. (6) and (7) that J,«(k)
= —Z2(0, k)/2SN and Z~ = —Z2/O, k =0) =2SNZ, «(0).

The matrix element & o. Ie"'I P& is calculated in
Ref. 1 and we get

1&~
I

e"'I II& '= b.„..„"„b.....,..x. .&y},

where y = —,'k', o', e=(h/m~, )'~2 is the cyclotron
radius, and k, is the magnon wave vector perpen-
dicular to the magnetic field. The function
x„„(y)was defined in Ref. 1. It is a sum of
terms involving transitions between the Landau
levels with M +~ 0. In the limit of small k's only
the transitions with 4n =0 are important.

Substituting Eq. (8) into the expression for
Zz(0, k) obtained from Eq. (4), and performing
the summations over p, and p, , one obtains

$pp
Za(0, k) = 22, ,N" Q X. .(y) +. .(x„), (9)

where

h~), -gpaH —h~~ '-Z()c, , k) =0.

In the following, the frequency dependence of the and

x)) = k /2k' (10)
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1 l„(1+ILg)(i —P2)
x, (1 —pf)(l + p',,)

Here k~ is the Fermi wave vector and

p;= (2k, k, +k~)/k2 with i =1,2; k2 =k2 —k&,

terms of the indirect exchange. As mentioned
before, J,'«(8) may be obtained directly from Eq.
(9) as

k,'=k', (n'-+-,') —,——,(k~, +Z„S},
and

k2 =kz- (n+ —,') + —(Ru, +Z~ S).

(12b)

(12c)

Substituting e'"'" by

I v j' (k ft ) etv(l0y 0l)

In the limit of long wavelengths (k «k~, o '), ex-
panding E„.„(x„)and g„,„(y) in powers of x„and y,
respectively, Eq. (9) leads to a quadratic magnon
dispersion of the form

and assuming the same approximations as those
involved in arriving at Eq. (13), one finally gets

Z(0 k) = ——' " (x'+y'x')38 N~ J
4 N II P (13) (16)

where

x, =k, /2k„y = 2(k~, e,)'~'/Z, „S, (14)

To see this we note that as B-0 the term in x„
vanishes at the same time that x,—f x (x =x ~

+ x „), since the system now becomes isotropic.
To conclude, let us now analyze these results in

and N, is the number of conduction electrons. In
arriving at Eq. (13) we have approximated )I„,„(y)
by the term involving only n' =n, which is valid as
long as k~vz« ~„where wz is the Fermi velocity.
It was also assumed that J~S is greater than h~,
and that only the lowest Landau levels are impor-
tant.

Equation (13) indicates that in the presence of
strong fields the magnon dispersion becomes aniso-
tropic. This is of course a consequence of the
Landau level structure. In particular, the mag-
non dispersion along the magnetic field axis is
enhanced with respect to the dispersion in the
perpendicular direction. This result could have
been anticipated since under strong fields the
electron motion perpendicular to the field becomes
localized, which makes it more difficult to create
a spin deviation which propagates in that direc-
tion. In terms of the indirect-exchange theory
this could alternatively be seen as due to the
localization of the indirect-exchange integral in
the perpendicular direction, as we shall see be-
low. Finally, in the limit of weak or zero mag-
netic field, Eq. (13) reduces to the well-known
result of the BKKY theory namely 'o'6

where si(x) is the sine-integral function. " Once
again we see that, contrary to the zero-field ease,
the indirect exchange in strong fields is not iso-
tropic, being oscillatory in the direction paralle1.
to the field and relatively localized in the perpen-
dicular direction. Furthermore, Eq. (16) leads
to the same type of oscillatory magnetic ordering
as in the case of the usual RKKY theory, i. e. ,
Z„,(H) is ferromagnetic for 2k+ IR„ I less than the
first zero of si(x), which occurs at x=1.9. Com-
paring this value of the first zero of Z,«(H) with
that of the RKKY theory, namely=4. 5, one con-
cludes that the effect of the strong field is not only
that of localizing the indirect exchange in the per-
pendicular direction but also of confining the os-
cillatory part of the interaction. In fact using the
properties of si(x), " it is easy to see that J,«(H)
as given by Eq. (16) vanishes more rapidly than
its counterpart in the zero-field ease.

Finally, we note the following in regard to the
size of the effects reported in this note. As men-
tioned before, the anisotropy induced by the Lan-
dau levels will hardly be seen in ferromagnetic
semiconductors, the reason being that in these
materials the direct exchange is usually far
greater than the indirect exchange as given by the
HKKY theory. On the other hand, from Eqs. (13)
and (15) we see that the magnon energy correction
is just about the same as that of BKKY theory.
Hence, possible experimental observations are
therefore restricted to the eases of ferromagnetic
metals (rare-earth metals) and of magnetic im-
purities in a nonmagnetic metal host.
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