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Abstract. Phonon scattering by electrons in the simultaneous presence of intense laser and 
magnetic fields is discussed. A kinetic equation is derived, and the rate of change of the 
phonon population is calculated. For laser radiation propagating parallel to the magnetic 
field, it is found that multiphoton processes are dominant when the laser frequency is near 
the electron cyclotron frequency. Furthermore, the damping rate is found to decrease as the. 
laser frequency approaches the electron cyclotron frequency. 

1. Introduction 

There has been recent interest in the study of the interaction of intense laser fields with 
semiconductors (Ephstein 1970,1971, Puchkov and Ephstein 1974, Bass and Granovskii 
1971) and plasmas (Seely and Harris 1973, Cohn et a1 1972), aiming not only at the exci- 
tation of higher harmonics and amplification of high-frequency phonons, but also to be 
able to change the conductivity in these systems. Since the laser frequency is usually much 
greater than the electron cyclotron frequency, an external magnetic field probably 
has little effect on the rate of absorption of laser energy by the system, but has a major 
effect on the confinement of the electron states. However, a resonance condition, where 
the laser frequency is equal to the electron cyclotron frequency, may be approached 
either by increasing the magnetic field strength or by using longer-wavelength lasers. 
Intense submillimeter lasers are becoming available (Lax and Cohn 1973) and it is 
therefore important to consider the cylotron resonance absorption of this radiation. 
In this paper we consider phonon scattering by electrons in the field of an intense laser 
radiation (Ephstein 1970) and include the effects of a strong magnetic field. We assume 
the ion cyclotron frequency to be much smaller than the phonon frequency so that the 
phonons are affected by the magnetic field only indirectly through the electrons. The 
laser beam is treated as a classical plane electromagnetic wave in the dipole approxima- 
tion. The electron states are described by the solution to the Schrodinger equation for an 
electron in the laser field and a uniform static magnetic field. 

Phonon scattering by the electrons is treated using first-order perturbation theory 
retaining, however, the laser field strength to all orders. The transition probabilities are 
used to write a kinetic equation for the phonon population (Harris 1969), from which the 
damping rate is obtained. For the case of laser radiation propagating parallel to the mag- 
netic field, the phonon damping is found to decrease as the laser frequency approaches 
the electron cyclotron frequency. 
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2. Formulation 

Let the magnetic field be in the + z  direction. Neglecting the spatial dependence of the 
electromagnetic field of the laser beam, the vector potential of the laser and magnetic 
field is thus taken to be 

A ( y ,  t )  = A( t )  - B y e  

A ( t )  = (cE,/w) [ e ,  cos (ut) + ey sin (ut)] (1) 
where B is the magnetic field strength and A( t )  represents the field of the laser beam, 
assumed to be a right-hand circularly polarized plane wave propagating parallel to the 
z axis. The solution to the time-dependent Schrodinger equation for the electron motion 
is (Seely 1974) 

where 

Here CO, = 1 e 1 B/mc is the cyclotron frequency, p ,  and p ,  are constants of motion, n is the 
Landau-level quantum number, and $,([) is the harmonic-oscillator wavefunction. The 
real functions of time G(t) and Q(t)  are determined by the equation (Seely 1974) 

G(t) + iQ(t) = 2 dt’[A,(t’) - iA,(t’)] exp [iu,(t - t’)], (3) 
ew C s’ 

where A,(t) and A,(t) are components of A(t). We refer the reader to Seely’s paper (1974) 
for a more detailed discussion of the solution (2). 

Treating the electron-phonon interaction as a perturbation, the probability ampli- 
tude for the transition from state 1 (nl, pix, pl,) to state 2 (nz ,  p Z x ,  p 2 , )  due to the collision 
with a phonon of momentum hk is 

a(1 -+ 2; k )  = - d3 x dt@v, exp [i(k. x - ukt)]i,bl (4) 

where vk is the electron-phonon coupling. Substituting (2) into (6) and performing the 
integration over x and z ,  we obtain: 
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where 

'(t) = ' Y  ~ X P  (ikyY)4n2(C2)4nl(C1) (6) 

i = 1 or 2. 

Integrals similar to the one in (6) have been considered by several authors (Lee and Tzoar 
1969, Gomes and Miranda 1975). The result is (Gomes and Miranda 1975) 

SI: 
ii = (mw,/ti)"2y - (mw,h)-'/2[pix - G(t)] ,  

'(t) = exp w&L + PZX - 2G(t)l/2mwc}lI(n2.n1,p), (7) 
where y(n,, n,, p )  has been defined previously (Gomes and Miranda 1975) with p = hk:/ 
2mw,. 

The integration over t in (5) may be performed after expanding the factors that are 
periodic in time in the Fourier series: 

+ m  [>j ( ) -!.!!&!-iek,~'d,4]~ (8) 1 F,(k)exp (-ivwt) = exp - dt' G - - A ,  m u ,  mc 
V = - X  

Then (5) may be written as 

2 
Plz 
2m 

- En! - - - h a ,  - V ~ W  (9) 

From the well known relation between the scattering amplitude and the T-matrix 
(Roman 1965) we can then use (9) to obtain the transition probability per unit time, 
T, (1 -+ 2, k), for the transition from state 1 to state 2 due to a collision with a phonon k 
with absorption (v > 0) or emission (v < 0) of IvI photons. One gets: 

The rate of change of the number of phonons of wavenumber k, dN,/dt, is then given 
in terms of the transition probability as (Harris 1969, Parry and Turner 1969) 

dN,,dt = ykNk 

where 

x [f(E') - f(E)]G(E' - E - ho,  - v ~ w ) .  (12) 

Here E' = ho,(n + I + 3) + ( p ,  + hk,)'/2m, E = ho,(n + 3) + p,2/2m, /FV(k)l2 = J;(i,/hw) 
where J ,  is the Bessel function of order v, and 3, = ehk,E,/m(w - w,) = hk,c, is the 
field parameter. In the case of a right-hand circularly polarized plane wave propagating 
parallel to the magnetic field, the Fourier coefficients F,(k) are Bessel functions (Seely 
1974). 
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In the following we assume a Maxwellian distribution for the electrons. This assump- 
tion is relevant to a significant range of semiconductor materials and is valid provided 
the electron heating in the radiation field may be neglected. The latter is valid if e 2 E i /  
2mw2 < ( E )  where ( E )  = k,T is the average energy of an electron in the absence of the 
radiation field. Therefore our results are restricted to radiation fields Eo smaller than the 
threshold heating field 

E,  = (2mw2k,7'/e2)1i2.  

Furthermore, we shall consider only the laser-cyclotron resonance case, namely, 
w 

For large values of argument, the Bessel function is small except when the order v 
is equal to the argument. The sum over vin (12) may then be written approximately as 

w,. Then i S ho and the argument of the Bessel function is large. 

+a 

2 IJv(n/ho)l2s(n - vho)  = +[S(!J - 2) + s(n + A)]. 
v = - w  

The factor $ may be verified by integrating both sides of the equation over 0 = E' - E 
- ho,. The first &function corresponds to the emission and the second to the absorption 
of A/ho photons. Since 1 >> hcu, only multiphoton processes are significant. The phonon 
damping then becomes 

+m 

Y k  = 1 1 zriI%(n + n, [r f(E)(exp [ -(A + h o k ) / k B T ]  - l >  
n, pX, P= 1 = - 

6(E' - E - hw, - 2) + f(E) {exp [(A - hw,)/k,T] - 1}6(E' - E - ho,  + A)]. (13) 

If we further assume that A >> k,T for w near CO,, the contribution of processes in which 
photons are emitted is negligible compared with the contribution of processes in which 
photons are absorbed. Under these circumstances, (1 3) reduces to 

71 
y - - 1 1 l ' i lI(n + 1, n, p)12f(E){exp [(A - ho,)/k,T] - 1}6(E'-E-hwk+1). 

(14) - h , = - m n 3 p x , p 1  

Equation (14) is quite general and valid for any radiation and magnetic field strengths. 
The only assumptions are that CO is near w, and that the electrons obey a Maxwellian 
distribution. Since the existence in most semiconductors of well defined Landau levels 
is not easily attainable with relatively low magnetic fields, we shall in the following take 
the classical limit of (14) by letting (Harris 1969, Walters and Harris 1968) 

h 4 0  and n - m ,  (1 5 )  

nho,  4 $mu: (16) 

such that 

Hence, expanding (14) in powers of h and retaining only the lowest-order terms, one gets 
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where we have written L as hk,uo with tio = eE,/m(o - w,), and replaced Ijc(n + I ,  n, p)I2 
by its classical limit (Walters and Harris 1968) Ix(n + I ,  n, p))’ --+ J~(k,u,/o,). One 
notices that vi is proportional to h so that (18) is in fact independent of h. 

For E ,  = 0 (U, = 0), (18) reduces to the well known expression for the phonon 
damping in a uniform magnetic field in the classical limit (Harris 1969), On the other 
hand, for B -+ 0 (0, --+ 0), the argument of the Bessel functions in (18) is large, so that, as 
before, we may approximate yk  by 

This is essentially the same result as one would get for the phonon damping if we had only 
the radiation field, in the limit of either E ,  very large or w very small. It can easily be 
worked out using the electron wavefunction in the presence of the radiation field only 
(Seely and Harris 1973). 

Going back to (18), substitutingf(u) by n , ( n ~ ; ) - ~ 1 ~  exp (- u2/u;), where ti; = 2k,T/m, 
and performing the integration over U, using the &function, one has 

where 
f + m  

Fl(k,u,/w,) = I dx exp (- x)J;(k,uT,jx/o,) = exp [ - k:v~/2w,2]Z1(k:u.T/2w,2). (21) 
J o  

Equation (20) is the expression for yk which we wish to discuss. The first point one notices is 
that, regardless of the value of E,, for w = w, (i.e. uo -+ CO) y k  vanishes. Physically this 
result may be understood as follows. Consider the problem of a single electron in an 
electromagnetic field described by A(t )  and moving in a potential V (the lattice potential). 
For simplicity we shall neglect the external magnetic field. We have 

H = [ p  - (e/c)A(t)I2/2m + I/= H, + k! 

In the case of a strong field, such that leAl % ]VI, the above Hamiltonian may be approxi- 
mated by the first term H, which is the free-particle Hamiltonian. In other words, under 
strong fields, the electron no longer sees the phonons; the electron-phonon interaction 
becomes frozen ( y k  = 0). Hence the fact that yk  vanishes for w = w, may be understood 
as if, at the resonance, the radiation field were infinitely large. 

The second point regarding (20) is that for w near U,, but not necessarily at resonance, 
the phonon population may in principle grow with time for wavevectors k in a general 
direction 8, provided k,uo > wk or uo > us, the sound velocity. This condition is in fact 
amply satisfied for w - w,. However, the estimative of this growth rate from (20) is 
quite tedious. Nevertheless, one may get the order of magnitude of the size of this effect by 
considering the case where k,u, e 0,. In this case, the 1 = 0 component in (20) and (21) 
is the dominant one and we have 

which is maximum for 
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Since U, % us, this latter condition is roughly U, = 4 2 ,  from which one obtains the 
critical field E, = [m(w - w,)2k,T/2e2]'i2, which maximizes yk. One notices that F, 
must be smaller than E, in order that heating may be neglected. By writing 10 - w,I = 
roc, wherermeasuresthematchingoftheresonance, wehaveE, = J w  - oClEJ2w N rE,/2. 
This means that, in fact, heating may be neglected, as r < 1 near resonance. 

Assuming the jellium model, U: = 2ne2hok /Vk i  .where k,  rr w,/v,, and taking 
E ,  N E,, (22) reduces to 

provided k < k,, w,/vT For a typical semiconductor, like n-type InSb, with m = g, 
no = 10l6 cm-3, T = 300K and B = 10 kG, the critical intensity for which (23) is valid, 
taking r = 0.1, turns out to be of the order of 500 W cm-2, at a frequency of about 
1.6 x 1013 s-1. 

3. Conclusions 

In this paper we have looked at the effects of the laser-cyclotron resonance on phonon 
damping in semiconductors. It has been shown that, as one approaches resonance, the 
damping coefficient vanishes. Physically, this is understood as if at resonance the radia- 
tion field were infinitely large, which in turn entails that the electron-phonon interaction 
becomes frozen. 

If, however, one is not at resonance, but near it, it has also been shown that one might 
in principle observe a growth of the phonon population. The expression (22) for the 
growth rate is formally analogous to the usual growth rate in a DC electric field where U, 
replaces ud. the drift velocity. For long-wavelength acoustic phonons, the growth rate 
near resonance has been shown to be of the order of wk for E ,  = E,. A numerical estimate 
of the required critical intensity for a typical semiconductor like n-type InSb has also 
been given. 

In any event, although our model contains a number of simplifying assumptions, we 
believe that, at least qualitatively, the essential conclusions may be useful in explaining 
future experimental results. 
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