AlP | ria™

Plasma wave instability in the field of an intense electromagnetic wave
M. A. Amato and L. C. M. Miranda

Citation: Physics of Fluids 20, 1031 (1977); doi: 10.1063/1.861974

View online: http://dx.doi.org/10.1063/1.861974

View Table of Contents: http://scitation.aip.org/content/aip/journal/pof1/20/6?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Gradient instabilities of electromagnetic waves in Hall thruster plasma
Phys. Plasmas 20, 042103 (2013); 10.1063/1.4799549

Instabilities and generation of a quasistationary magnetic field by the interaction of relativistically intense
electromagnetic wave with a plasma
Phys. Plasmas 17, 082104 (2010); 10.1063/1.3466848

Filamentation instability of an electromagnetic wave in an expanding plasma
J. Appl. Phys. 72, 2149 (1992); 10.1063/1.351603

Filamentation instability of electromagnetic waves in magnetized plasmas
Phys. Fluids B 1, 1926 (1989); 10.1063/1.858924

Electromagnetic wave generation utilizing plasma instabilities
J. Appl. Phys. 62, 3598 (1987); 10.1063/1.339262

Did your

T

publisher get
F‘ L in 20147

\ 1 1= 1 . .
hiihlichino
UULIS! T T i
o

AlP

Publishing. THERE’S POWER IN NUMBERS. Reach the world with AIP Publishing.



http://scitation.aip.org/content/aip/journal/pof1?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1907904394/x01/AIP-PT/PoF_ArticleDL_081915/1_AIP-ALLstatic1640x440-umbrella.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=M.+A.+Amato&option1=author
http://scitation.aip.org/search?value1=L.+C.+M.+Miranda&option1=author
http://scitation.aip.org/content/aip/journal/pof1?ver=pdfcov
http://dx.doi.org/10.1063/1.861974
http://scitation.aip.org/content/aip/journal/pof1/20/6?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/4/10.1063/1.4799549?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/17/8/10.1063/1.3466848?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/17/8/10.1063/1.3466848?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/72/6/10.1063/1.351603?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pofb/1/9/10.1063/1.858924?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/62/9/10.1063/1.339262?ver=pdfcov

Plasma wave instability in the field of an intense

electromagnetic wave
M. A. Amato*

Departamento de Fisica, Universidade de Brasilia, 70.000 Brasilia, DF, Brasil

L. C. M. Miranda

Instituto de Fisica, Universidade Estadual de Campinas, 13100 Campinas, Sao Paulo, Brasil

(Received 12 October 1976)

The plasmon scattering by electrons in the presence of an intense laser field is discussed. It is shown that
in the strong field limit the plasmon population may become unstable.

There has been recent interest in the study of the in-
teraction of intense laser fields with plasmas,!™* In par-
ticular, the effect of laser-cyclotron resonance on Lan-
dau damping has been discussed.*

Here, we extend the theory of Ref. 4 by considering
the plasma wave scattering by electrons in the presence
only of an intense laser field. Our approach follows
closely that of Ref. 4. The laser beam is treated as a
classical plane electromagnetic wave in the dipole ap-
proximation. The electron states are described by the
solution to the Schridinger equation for an electron in
the laser field. The scattering of plasma waves by elec-
trons is treated using first-order perturbation theory.’
The kinetic equation for the plasmons is then derived
using the quantum approach of Harris® based upon the
transition probabilities. It is found that, in the strong-
field limit, only multiphoton processes are significant
and as a result the plasmon population may grow with
time.

We start with the solution to the time-dependent
Schridinger equation for an electron in the electromag-
netic field of the laser beam, namely,?

; ¢
z:nﬁf dt'[ np - %A(t’)]a}.

P(x, t) =L'3/2exp{ip ‘X~
1)

Here, p is the electron wave vector such that in the ab-
sence of the radiation field the electron energy ¢, is
K%p?/2m and A(t)=(cE,/w)coswt is the vector potential
of the laser field of frequency w, within the dipole ap-
proximation,

Treating the electron-plasmon interaction® as a per-
turbation and proceeding as in Refs, 1-4, the transition
probability per unit time, 7,(1—2; k), for a transition
from a state 1 (p, =p +k) to a state 2 (p,=p) due to a col-
lision with a plasmon k with absorption (v< 0) or emis-
sion (v >0) of |v| photons may be written as

T,(1~2;k) .
= 20/ B)| V| 2T A0/ B0)5(€pus — €, — it — Vi), )

where Vi=2nefiw, /VF is the electron-plasmon ver-
tex,*7 J, is the Bessel function of order v, A=ekk - E,/
mw is the field parameter, and w, is the plasmon dis-
persion relation.

The change in N, the number of plasmons of wave-
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number k, is then given in terms of the transition prob-
ability 7, as!~S

de/dt=')’ka ’

where

Ya=@r/BVEY D JAO/H0) fl€pm) —f (€,)]

y==-0 P

X B(€pp, ~ €, — Fwy — VEW) , (3)

In Eq. (3), f(€,) is the electron distribution function,
If v, >0, the plasmon population grows with time where-
as for y,< 0 we have damping,

We now assume a Maxwellian distribution for the elec-
trons and only consider the strong-field limit, namely,
x> fw, The assumption of a Maxwellian distribution for
the electrons is valid provided the electron heating in
the radiation field may be neglected. The latter is valid
if e2E% /2mw?< (E) where (E)=k,T is the average en-
ergy of an electron in the absence of the radiation field,
Therefore, our results are restricted to radiation fields,
E,, smaller than the threshold heating field E,
=%2m2kBT/e2)1/ 2 Under the strong-field conditions
(A > Fw) the argument of the Bessel function is large.
For large values of argument, the Bessel function is
small except when the order v is equal to the argument,
The sum of v in Eq. (3) may then be written approxi-
mately as?

3 THNFw)s(€ ~ viw) =~ 5[5(€ = 1) +5(€ + )],

frer
where €=¢,,, — €,— Fw,., The first 5 function corre-
sponds to the emission and the second to the absorption
of 2/Fw photons. Since x> fiw, only multiphoton pro-
cesses are significant. The damping rate then becomes

o= (/M2 2 (f(€,){expl - (A + 7o) /R T) = 1}

X 8(€pay — €5 — Fiwy = X) + f(€,) {expl (A - Aw,) ks T] ~ 1}
X O(€pun — €5 — Fiwy + 1)), (4)

Furthermore, assuming that A>>kz7, the contribution
of processes in which photons are emitted is negligible
compared with the contribution of the processes in
which photons are absorbed, Under these circumstances,
Eq. (4) becomes

Copyright © 1977 American Institute of Physics 1031



Ya= (n/M)0E 3 f€,) fexpl (A = Hwy) /b T) - 1}
»

X 8(€pup — €p = Fiwy +1) . (5)

We now {ake the classical limit of Eq, (5) by letting
E— 0 such that!'®®

hp—~ mv |

S fle) =V [drw(- ) f ).
P
Hence, expanding Eq. (5) in powers of % and retaining
only the lowest-order terms, one gets
27 26w,

Ve = W(k'vo_wk)

desvf(v)ﬁ(k-v-wk+k-vo), (6)

where we have written A as %k - v, with vg=¢eE,/mw.

For E =0 (v,=0), Eq. (6) reduces to the well-known
expression of the Landau damping.>*® Now, replacing
F(¥) by ny(nv2y¥ 2 exp(- v2/v2), where v% =2k, T/m and
performing the integrations one has

wiw, (k-vy—w
7”=7’Uzkv: (——k%-T——")—exp[—(k-Vo—wk)/kaT], (7N

which is maximum (y,~ wiw, /k?v%) for x= |k + vy—w,| /
kv, ~v,/vp=%, assuming k parallel to E;. The condi-
tion v,=v; /2 defines a critical field

E,=(mw?ky T/2e®)V/ %< E,,

for which y, is positive and maximum, Furthermore,
inereasing E (E,~ =), thedamping rateapproaches zero,
Physically, this may be understood as follows: Consid-
er the problem of one electron in an electromagnetic
field described by A(¢) and moving in a potential V (the
plasmon field). We have

H=(=1/2m)p - (e/c)A(t)P+V=Hy+ V.

In the case of a strong field, such that ieA[> |V{, the
Hamiltonian may be approximated by the first term H,
which is the free-particle Hamiltonian. In other words,
under strong fields, the electron no longer sees the
plasmons; the electron-plasmon interaction becomes
frozen (y,=0).

*Present address: Department of Physics, Imperial College,
London SW 7 2AZ, England.
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The collisionless trapped particle instability in toroidal systems is studied as a radial boundary value
problem. It is shown that in the presence of a small amount of magnetic shear, electrons can flow along

the field lines to stabilize the mode.

The trapped particle modes in toroidal machines
were first studied by Kadomtsev and Pogutse, who
showed that a purely growing instability can be excited
by the bad curvature drift of particles trapped in the
toroidal magnetic field.! They found that stability re-
quires either an amount of magnetic shear strong
enough to reverse the direction of the drift, or a cer-
tain condition on the density and temperature radial
profiles. Another stabilization mechanism was pro-
posed by Pogutse who suggested that the finite trapped
ion radial displacement {banana size) can stabilize the
short wavelength limit of the mode.??® In obtaining this
result, which is similar to the finite ion Larmor radius
effect on the flute mode in a slab geometry,* the radial
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wavenumber was considered constant. We remove this
limitation by letting the magnetic shear, together

with the appropriate boundary conditions, determine
the radial mode dependence. The parallel inertia of the
circulating electrons and finite banana size effects are
also included.

Consider a static magnetic field of the form
B=B,(1-€cosb) g, +B, ()& ,
where ¢ and 6 are the toroidal and poloidal angles, re-
spectively, with the corresponding unit vectors Eo and
2,. €=7/R is the toroidicity (inverse aspect ratio)
assumed much less than 1. The equilibrium distribu-
tion functions of the circulating and trapped particles of
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