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       Summary - This papers deals with  the attitude dynamics 
and control of the Brazilian Scientific Application Satellite 
(SACI-1). It is a 60 Kg small satellite carrying experiments for 
scientific purposes. The satellite orbit is polar at 750 Km altitude. 
The attitude control combines passive spin stabilization with 
active Geomagnetic Attitude Control. The main task of the 
Attitude Control Subsystem (ACS), is to: a) maneuver the vehicle 
to point its solar panel towards the Sun; b) to execute the satellite 
spin up; c) to keep the attitude and spin rate close to the nominal 
specifications during the satellite lifetime. 

 
INTRODUCTION 

 
     The Brazilian Scientific Satellite, SACI-1 is to be 
launched as a piggyback satellite by Chinese Long March 4 
launcher. The ACS combines passive attitude control (spin 
stabilization) with active magnetic attitude control. The 
subsystem comprises: one analogue sun sensor (ASS); a 
three-axis magnetometer sensor  (MAG); three torque coils 
and their electronics; a viscous ring nutation damper, and 
interfaces. There is also an onboard computer to execute 
the automatic attitude control. The main objectives of the 
ACS are: to spin-up the satellite; to drive the satellite from 
after-separation attitude conditions to payload-operating 
conditions; to keep the nominal attitude and spin rate close 
to the specification during the satellite lifetime. This paper 
focus on the magnetic attitude control.  
 

T ORQUE COILS 
 
     The use of the geomagnetic field yields one of the 
simplest and most practical means of satellite attitude 
control. The interaction between the onboard 
electromagnetic dipole moment and the geomagnetic field 
provides the control torque. The torque N upon a satellite 
produced by a magnetic moment M interacting with a 
magnetic field B is  
 

N M Bm = ×                                                                                            (1) 

 

Thus the torque will have no component in the direction of 
M. For attitude acquisition and attitude control, the 
required torque shall be normal to the spin axis . This torque 
can be obtained with a magnetic moment aligned to the 
spin axis. On the other hand, for satellite spin up and spin 
speed corrections the required torque shall be aligned with 
the spin axis. This can be accomplished with a magnetic 
moment on the spin plane. For the SACI-1 two of the 
torque coils will be attached to the satellite lateral sides 
with the magnetic moment axis parallel to the x and y axes 
respectively (spin plane coils). The third one will be parallel 
to the z-axis (spin axis coil). Fig. 1 shows the torque coils 
attached to the satellite. 
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Fig. 1. Torque coils configuration on the satellite. 
 

The whole satellite active attitude control will be 
performed by using torque arisen from the coils magnetic 
moment interaction with the Earth magnetic field. The spin 
plane coils will be used mainly to spin-up the satellite and 
to execute the spin rate control. The spin axis coil will be 
used for two basic maneuvers: to point the solar panels 
towards the Sun and to keep the nominal attitude during 
the satellite lifetime. The spin axis torque coil shall provide 
a magnetic moment of 8.0 ± 1.0 A.m2 in the positive or 
negative sense. The spin plane coil shall provide a 



magnetic moment of 4.0 ± 1.0 A.m2 in the positive or 
negative sense. The torque coils specifications are shown 
in Table I. 

The magnetic attitude control requires a sensor, the 
magnetometer. This sensor detects the magnetic field 
magnitude and direction. This information is used by the 
onboard computer to calculate the control. 
 
Table I: Torque coils  specifications 

Specifications Spin axis coil Spin plane coils 
Magnetic Moment 8 ± 1 A.m2 4 ± 1 A.m2 
Inner diameter 298 mm 234 mm 
External diameter 324 mm 264 mm 
Height 13 mm 12.5 mm 
Voltage  28 Volts 28 Volts 
Operational 
temperature 

-20 0 C  to   400 
C  

-20 0 C  to   400 C 

Number of turns 900 1080 
Attachment flange  8 holes 8 holes 
Hole diameter 3.2 mm 3.2 mm 
Wire AWG 30 (Termofix) 32 (Termofix)  
Nominal current 70 mA 100 mA 
Power 2 W 2.7 W 
Resistance 400 Ω 270 Ω 
Weight 0.8 Kg 1.2 Kg 

 
      For an altitude of 750 km and assuming the worst-case 
polar magnetic field, M=0.44 gauss, the torque generated 
by a 4 A.m2 coil is about 1.76x10-4 N.m. The gravity gradient 
torque is about 2.28x10-6 N.m for the same altitude and an 
angle of 300 with respect to the local vertical. Thus the 
magnetic torque is almost 80 times the gravity gradient 
torque. 
 

MATHEMATICAL MODEL AND CONTROL LAWS 
 

      The mathematical model takes into account a partially 
filled viscous ring nutation damper. The details of a satellite 
and the damper mathematical modeling can be found in [1]. 
The rotational equations are derived by the Lagrangian 
formulation for quasi-coordinates [2]. By this approach it is 
necessary to derive the kinetic energy, which is a function 
of the components of the angular velocity vector and the 
fluid rotational speed, &β . It depends also on the angular 

position of the fluid (β) inside the nutation damper annular 
ring. The movement of the fluid causes  variations on the 
satellite moments and products of inertia. Thus the kinetic 
energy expression can be written as 
 

T T x y z= ( , , & , )ω ω ω β β  

 
where ωx, ωy , and ωz are the components  of the angular 
velocity vector. 

The Lagrange’s formula for quasi-coordinates is: 
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[ ]~ω =  is a skew symmetric matrix  

 

{ } { }N N N Nx y y
T

=  is the total disturbing torque 

vector plus the control torque. 
 

The Lagrange’s formula for generalized coordinates is 
used to derive the dynamic equation of the fluid associated 
to the partially filled viscous ring nutation damper. The 
formula is  
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where β is the generalized coordinate representing the 
position of the fluid slug inside the nutation damper 
annular ring at time t and Qβ is  the generalized force 
associated to the fluid viscosity, Reynolds’ number and the 
nutation damper parameters. It can be written as 
Q c Rdβ β= & , where cd  is a damping coefficient. By using 

the Lagrange formulation for quasi-coordinates the 
rotational equations can be written as 
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By using the Lagrange’s formula for generalized 
coordinates the dynamic equation for the fluid slug 
(nutation damper) becomes 
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The control torque (magnetic) N is given by Eq.(1) 

where M can be written as 
 

M
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where ks is the unit vector along the spin axis and is is the 
unit vector along one of the satellite transversal axis. 
 

SPIN AXIS ATTITUDE CONTROL 
 

The spin axis can be steered between two given 
attitudes by conveniently switching the axis magnetic coil. 
The control policy derived here is based on [3]. Denoting 
by k f  the unit vector corresponding to the spin axis desired 
attitude and by H the actual angular momentum vector, the 
error vector can be written as 
 

E k
H

= −f H
                                                           (7)  

 
where H is the magnitude of H. The objective of the control 
is to reduce the error E to zero. Differentiating the error E 
with respect to time and taking into account that Nm is 
equal to the rate of change in time of H, one obtain 
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Considering Nm orthogonal to H for spin axis control, that 
is, N k Bm fU= × , it can be checked after some algebraic 

manipulation that &H = 0 . Then Eq.(9) can be written as 
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The sufficient asymptotic stability condition for E is  
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That yields the control criteria 
 

U sE k B⋅ × ≥( ) 0                                             (11) 

 
By assuming U as a bang-bang controller and defining a 
switching function as 

s s1 = ⋅ ×E k B( )                                                 (12) 

 
then the control criteria to govern the polarity of U are 
expressed as  
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By selecting the polarity of the dipole moment according to 
the sign of s1, the magnitude of E always decreases. 
Therefore, the desired orientation can be achieved from any 
initial state. 
 

SPIN RATE CONTROL 
  

The spin rate control is performed by using the spin 
plane magnetic coil whose axis is orthogonal to the spin 
axis. The formulation is similar to that for the spin axis 
control but the error E is given by: 
 

E H H H kf f= − =,   I s sω s                                 (14) 

 
The control torque in this case is given by Nm=V(i x B) so 
that the switching function for spin rate control is given by 
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SIMULATION RESULTS 

 
The equations of motion presented here are written in a 

reference frame aligned to the satellite principal axes of 
inertia. It is necessary to write these equations and the 
control torque, in terms of the satellite orbital position and 
the spin axis attitude. This attitude is given by the spin axis 
azimuth and elevation angles with respect to the orbital 
plane. The equations must be written also in the spin angle 
variable.  



In practice every time the spin rate decays below 5 rpm 
the onboard computer will activate and control the coils 
polarity to execute the spin rate control increasing the 
speed up to this nominal value (6 rpm). The polarity of the 
spin plane torque coils must be changed twice per rotation 
at a constant phase angle. A mathematical model of the 
geomagnetic field, the Sun angle and the environmental 
disturbances are also necessary in order to simulate the 
attitude dynamics and control. The knowledge of the Sun 
position is necessary because in the normal mode 
operation the satellite must point the solar panels towards 
the Sun. In practice the Sun Sensor will detect the Sun and 
will inform its position to the onboard computer. The 
computer will check for the errors and will activate the 
torque coils to correct the satellite attitude. The gravity-
gradient torque, the torque related to the Foucault current 
and the residual magnetic moment inside the satellite are 
also taken into account by the computer simulations. 
Details of the mathematical models can be found in [1,3,4]. 

A simulation program [4] has been developed to test the 
control laws. The results are shown in the Fig. [2-4]. The 
main input dada used to simulate the attitude and control 
are 
 
Altitude: 750 km: 
Satellite initial spin: ≈ 0.001 rpm  
Principal Moments of Inertia): Ix = Iy = 2.7 Kg.m2 and  
                                                Iz = 4.6 Kg.m2 
 

 
 
Fig. 2: The satellite spin up 
 
 
 

 
 
Figure 3 - Sun acquisition  
 

 
 
Fig. 4: Nutation Angle decay during the Sun acquisition phase. 
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