
American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500

Reston, VA 20191

MULTI-OBJECTIVE OPTIMIZATION APPLIED TO SATELLITE CONSTELLATIONS I:
FORMULATION OF THE SMALLEST LOSS CRITERION

Evandro Marconi Rocco
Marcelo Lopes de Oliveira e Souza

Antonio Fernando Bertachini de Almeida Prado

Instituto Nacional de Pesquisas Espaciais – INPE
C.P. 515 CEP 12201-970 – São José dos Campos, SP, Brasil

E-mail: evandro@dem.inpe.br; marcelo@dem.inpe.br; prado@dem.inpe.br

ABSTRACT

In this work the problem of orbital maintenance
of symmetrical constellations of satellites, with
minimum fuel consumption, is studied using
impulsive maneuvers with time constraint. To
perform the station keeping of a constellation of n
satellites we have the problem of simultaneously
optimizing the maneuvers for n satellites using scarce
resources. When we consider all the satellites it is not
simple to determine the optimal maneuver strategy
that minimizes the fuel consumption with time
constraint. Therefore, the goal of this work is to
formulate and to study maneuver strategies that
makes possible to obtain solutions with small fuel
consumption considering all the satellites in the
constellation. The problem can be formulate as a
multi-objective problem due to the nature of the
station-keeping of a satellite constellation. Thus, the
multi-objective problem applied to satellite
constellations is defined and a new method of multi-
objective optimization is presented. This method can
consider n conflicting objectives simultaneously
without reducing the problem to an optimization of
only one objective, as occur with most of the
methods found in the literature. This new method,
called the smallest loss criterion, was compared with
other existent methods and it was verified that it is
capable to supply better results to the problem of the
station-keeping of satellite constellations.

THE MULTI-OBJECTIVE PROBLEM

The analysis of multi-objective problems was
developed, mainly, in Economy, in Sociology, in
Psychology and in Operational Research. However, it
is possible to find multi-objective problems in many
other areas. Actually, we worked with multi-
objective problems the whole time: when we make
most of the daily decisions we are working with

problems of this type. The simple act of choosing
which plate to order during the lunch could become a
big problem if we tried to optimize the choice using a
multi-objective approach: which factors should be
taken in consideration in the choice? The price, the
flavor, the appearance or the nutrients that the plate
can supply? Perhaps the cheapest plate is the less
tasty, the most expensive is the less nutritious and the
tastiest has the worse appearance. Considering these
factors, it is difficult to choose a solution that
optimize all the factors. But of course, we didn't
waste so much time everyday in the choice of our
lunch. In some way we found the solution for this
problem with less effort, but it is not possible to
affirm that it is the optimal solution, it is simply the
solution that in that moment, for some reason,
perhaps external to the problem, seemed to be the
best one. But for more important applications than
the choice of the best plate, it would be good if we
could find the optimal solution systematically. In
engineering, for example, we cannot choose the
solution for a problem in an aleatory or uncertain
way. It would be convenient to apply a methodology
capable to find the solution that assists all the
objectives in the best possible way. But that it is a
very complex task, mainly when we worked with
problems whose objectives are conflicting, that is, to
assist a certain objective obligatorily the other
objectives will be pained. According to the Theory of
Differential Games (Isaacs1) we can affirm that we
have a game of the lose-win type: for a player to be
victorious, the other necessarily has to be defeated. In
the algorithm developed in this work we considered
an intermediary case. Perhaps for applications in
engineering it is more convenient a draw among the
players.

According to Cohon2, the static optimization of
problems with one objective can be defined in the
following way:
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Maximize  ( )xZ   with relation of nRx   ∈   (1)

Subject to     ( ) 0g i ≤x      mi ..., 2, ,1 =
                     0≥x
Given           ( )  Z ⋅ , ( )  ⋅ig

or
Maximize  ( )xZ   with relation of nRx   ∈   (2)

Subject to  dFx ∈

Given        ( ) . Z , dF
where dF  is the feasible area of the decision space,

defined by:

( ){ }0 ;..., 2, ,1 ,0g| i ≥=≤∈= xxRxF min
d   (3)

The multi-objective problem can be defined by:

Maximize ( ) ( ) ( ) ( )[ ]xxxx pZ ..., ,Z ,Z 21=Z   (4)

Subject to dFx ∈

Therefore, in this case, the objective function, is a
vector with dimension p .

In problems of unidimensional optimization
(when we have one objective), the possible solutions
( dFx ∈ ) can be compared by means of the objective

function, that is, given two solutions 1x  and 2x  we

can compare ( )1xZ  with ( )2xZ  and to determine the

optimal solution so that dFx ∈  doesn't exist such

that ( ) ( )*xx ZZ > . In problems of multi-dimensional

optimization (multi-objective problem), in general, it
is not possible to compare all the possible solutions
because the comparison on the basis of one objective
can be contradicted with the comparison based on
another objective. Namely, supposing that:

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]2

2
2

1
2

1
2

1
1

1

Z ,Z

Z ,Z

xxx

xxx

=

=

Z

Z
  (5)

1x  is better than 2x if and only if:

( ) ( )2
1

1
1 ZZ xx >  and ( ) ( )2

2
1

2 ZZ xx ≥   (6)

or

( ) ( )2
1

1
1 ZZ xx ≥  and ( ) ( )2

2
1

2 ZZ xx >   (7)

If ( ) ( )2
1

1
1 ZZ xx >  and ( ) ( )2

2
1

2 ZZ xx <  we cannot

conclude anything regarding 1x  and 2x , that is, 1x
e 2x  cannot be compared

EXISTENT APPROACHES IN THE
LITERATURE FOR THE SOLUTION OF THE

MULTI-OBJECTIVE PROBLEM

The Weighting Method
A possible solution for the multi-objective

problem would be to combine all the objectives to

obtain an objective that is formed by the average of
the original objectives multiplied by an influence
factor:

( ) ( )xwx i

n

i
iMédio ZwZ ∑

=

=
1

 , ,  for iw  > 0   (8)

( )
( )x

x

i

Médio
i Z

Z
w

∂

∂
=   (9)

where iw  are the Lagrange multiplier, or the

influence factors, and ( )wx  ,MédioZ  a dependent

function that substitutes the set of objectives. Thus,
the problem can be treated as an optimization
problem with only one objective and therefore the
multi-objective formulation doesn't need to be
applied. In the practice, most of the multi-objective
problems have been treated in this way: initially a
multi-objective approach is used, and later, the
influence factors are applied, reducing the problem to
a unidimensional optimization.

The use of the influence factors eliminates the
necessity of the use of a more complex algorithm of
optimization, but it introduces new parameters w
that should be found and optimized. In this way, the
solution depends on the correct determination of
these factors. Therefore, this determination becomes
an optimization process by itself. On the other hand,
if in a certain multi-objective problem  the
parameters w  are known, the use of the influence
factors becomes efficient, but in this case the problem
is not a multi-objective problem, because in fact, we
just have the objective ( )wx  ,MédioZ  to be optimized.

The Constraint Method
In this approach the solution for the multi-

objective problem is found obtaining the optimal
solution for a certain objective while the other
objectives are constrained. For the case of the
maximization of the objectives we have:

Maximize  ( ) ( ) ( ) ( )[ ]xxxx pZ ..., ,Z ,Z 21=Z (10)

Subject to  dFx ∈

The constraint problem is given by:
Maximize ( )xhZ (11)

Subject to dFx ∈
                   ( ) kk LZ     ≥x

where 1 , ... ,2 ,1 −= hk  e kL  is a value a priori

determined The objective to be maximized is chosen
arbitrarily. To illustrate this approach, consider
Figure 1, where we intended to maximize
simultaneously 1Z  and 2Z . If the objective 1Z  was

constrained we have a reduction of the feasible space
of solutions for the problem. In this way, for a certain
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1Z  we easily obtain 2Z . However, this is not a

multi-objective formulation, because when we chose
one of the objectives to be optimized and we
constrained all the others, the problem will be
transformed in an optimization process with only one
objective. Furthermore, this approach can only be
used if all the kL  were known and, in the same way

that in the Weighting Method, the determination of
the kL  can be an optimization process by itself.

Z1

Z2Z2*

F0

F1

L

Solution of maximum
Z2 when Z1 = L

F1 = New feasible region

F0 = Feasible region

Fig. 1 – Criterion of the constraint objectives.

The Surrogate Worth Tradeoff Method
This approach is based on local approximations

made by a specialist (decision maker) during the
optimization process. The optimization procedure is a
variation of the Constraint Method presented in the
previous item. Given a problem with n  objectives,

2−n  objectives are fixed in values initially defined,
and the other two are optimized. But in fact, one of
those objectives is controlled by the specialist while
the other is optimized. Assuming that 2Z  should be

maximized and that 1Z  can assume different values,

the problem can be formulated in the following way:
Maximize   ( )x2Z (12)

Subject to   dFx ∈

                   ( ) 11     LZ ≥x
                   ( ) kk LZ     =x

where nk  , ... ,4 ,3=  and kL  is a predefined value.

However, this approach presents the same
deficiencies of the Constraint Method, and in this
case, we have to consider the specialist's performance
during the optimization process. In this way the
solution for the problem is particular for each
specialist. Thus, we cannot affirm that this is the
optimal solution for the problem.

The Multi-Objective Simplex Method
The Multi-Objective Simplex Method is an

algorithm that supplies the group of non inferior
solutions for a multi-objective problem. In fact, the
method doesn't supply the best solution, but it finds

the worst solution inside of the group of the
alternatives and it classifies all the others as non
inferior solutions. However, this method can only be
used for the linear cases. Therefore it cannot be used
in the maneuvers optimization problem, applied in a
satellite constellation.

Method Based on Geometrical Definitions of Best
The bases of this approach (Yu 3 and Zeleny4) is

the idea that the best solution presents the smallest
distance with relationship to an ideal solution
(utopian solution) previously defined. The method
begins with the definition of the ideal solution,
composed by the individual solutions. In general, this
ideal solution is out of the feasible space of solutions
for convex domains. Figure 2 illustrates this method
for the case of a problem where we want to maximize

1Z  and 2Z  simultaneously.

Z1

Z2

Z2*

F0

Z1*

Ideal solution

F0 = Feasible region

Fig. 2 – Ideal solution for a multi-objective problem.

The optimal solution would be the solution of the
feasible region that presented the smallest distance
related to the ideal solution, as it can be seen in
Figure 3.

Z1

Z2

Z2*

Z1*

d

Ideal solution

F0 = Feasible region

F0

Fig. 3 – Distance from the ideal solution.

The calculation of the distance d  between two
points pxx  , ... ,1  and py y , ... ,1 , according with this

method, it is given by:

α
α

α

1

1 










−= ∑

=

p

k

kk yxd (13)
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where α  varies from 1 to infinite, according to the
metric chosen, for 2=α  we have the definition of
the Euclidean distance between two points.

However, this approach presents three basic
deficiencies: 1) it doesn't use normalized measures,
thus, the solution depends on the dimension of each
objective; 2) the ideal solution composed by the
individual solutions is, in general, out of the feasible
space of solutions for convex domains, as shown in
the Figure2; 3) in general, the definition of the ideal
solution, which is the objective of the problem, is not
a trivial task, in some cases it is practically
impossible to determine, especially when the
objectives are conflicting. For example, in the case of
maneuvers, where we should minimize the time spent
in the maneuver and the fuel consumption, it may be
concluded that the ideal solution would be (0;0). But
this solution, besides being utopian, is also incorrect
because the objectives are conflicting and therefore it
would be impossible to obtain a solution like this.
And, supposing that the solution with time and fuel
consumption equal to zero is the optimal solution for
the problem, it would be easily noticed that the
satellite would not be maneuvered. Therefore, it
should be found another ideal solution. But, in the
same way that in the Constraint Method and in the
Surrogate Worth Tradeoff Method, will depend on a
specialist (decision maker) and in this way the
solution for the problem would be particular for each
specialist.

The Goal Programming Method
This approach can be considered as a variation of

the approach presented in the previous item. The idea
that the best solution is the solution of the smallest
distance from an ideal solution is also the base of this
approach, but in this case, the ideal solution is
predefined by a specialist (decision maker), based on
his personal experience or in any other subjective
method defined by the specialist. In this way, the
ideal solution is not the solution that represents the
maximum (or minimum) value for each one of the
objectives. Therefore it can be inside the feasible
space of solutions. Generally, the distance d  is
calculated by the Equation 13, but with 1=α . Thus,
the problem is defined in the way:

Minimize  ( )∑
=

−=
p

k

kk ZGd
1

1 x (14)

Subject to dFx ∈

where kG  represents an ideal solution defined by the

specialist.
But besides the deficiencies 1 and 3 of the

previous method, in this method the determination of
the ideal solution is an optimization process by itself,

and it will depend on each specialist, in this way the
solution for the problem becomes particular for each
of them.

Pareto Method (Non Inferiority)
Another possibility would be the use of the

algorithm of Pareto optimization (Carroll and
Mason5). This algorithm can be used in problems
where the objectives compete to each other. The
optimal solution is an element of a group of solutions
that are considered equally good in relation to the
objective vector. The algorithm should select, starting
from the feasible region of the decision space, a
group of solutions that support one “a priori” defined
criterion. This can be made through a methodology
that systematically makes a comparison among
candidates. A solution x  can only be considered
optimal for a certain group of objectives, if a better
solution y  in all the objectives doesn't exist. This

solution x  is called non-dominated (or non-inferior).
A solution x  is non-dominated if it doesn't exist a
possible solution y  such that:

( ) ( )xy ZZ ≥ (15)

or

( ) ( ) pkZZ kk  ..., 2, ,1   , =≥ xy (16)

If y  exists, then x  is a dominated solution (or

inferior) and in this way it is considered as not being
a Pareto optimal solution, in other words, it is not the
best solution in any of the objectives.

According to Kuhn-Tucker6, if x  is         a non-
dominated  solution then multipliers

miui  , ... 2, ,1  ,0 =≥  and pkwk  , ... 2, ,1  ,0 =≥
should exist such that:

dFx ∈ (17)

( ) migu ii , ... 2, ,1   ,0 ==x (18)

( ) ( ) 0
11

=∇−∇ ∑∑
==

m

i

ii

p

k

kk guZw xx (19)

The conditions of Kuhn-Tucker, (17) to (19), are
the necessary conditions for the solution x  to be
non-dominated. They are also sufficient if ( )xkZ  are

concave for pk , ... 2, ,1= , dF  is convex, and 0>kw

for all k .

Example 1: To illustrate this procedure, consider the
problem with two objectives presented in Table 1
where we have some alternative solutions for the
problem. We should choose the alternative that
maximize 1Z  and 2Z  simultaneously.

In Table 1 we can observe that the alternative A is
the optimal solution only considering the objective

2Z , the alternative B is the optimal solution
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considering the objective 1Z  and the alternative C is

not a optimal solution in relation to any objective.
Thus, the alternatives A and B are non-dominated
solutions, and the alternative C is a dominated
solution or inferior. According to Pareto, the
alternatives A and B represent the highest optimal
degree in the resolution of the problem.

TABLE 1 – 1o Example of the Pareto Methodology.
Alternative 1Z 2Z

A 10 11
B 12 10
C 9 8

Example 2: Another example is given by Table 2,
where we should choose the alternative that
maximize simultaneously the three objectives. In the
table, we have the alternative I that is sharply the
optimal solution for the problem, because it presents
the maximum value for the three objectives 1Z , 2Z

and 3Z . Whether in a multi-objective problem an

alternative solution like that exists, the multi-
objective approach becomes unnecessary. But a
solution of this type can only be found in problems
where the objectives are not conflicting. In most of
the problems this doesn't happen. Generally, when an
objective is maximized it is not possible to do the
same to the others.

TABLE 2 – 2o Example of the Pareto Methodology.
Alternative 1Z 2Z 3Z

A 5 8 7
B 4 9 2
C 4 4 4
D 3 10 6
E 2 9 8
F 5 10 1
G 5 3 8
H 1 10 8
I 5 10 8

The alternatives F, G and H maximize two
objectives simultaneously. The alternative F
maximizes 1Z  and 2Z . The alternative G maximizes

the objectives 1Z  and 2Z . And the alternative H

maximizes the objectives 2Z  and 3Z . Solution of

this type requires two non conflicting objectives.
Generally, it is difficult to happen. However, even if
it happens, it cannot be affirmed that a solution that
maximizes two objectives is better than another that
not maximizes any objective or maximizes only one,
because, different from the case where the three
objectives are maximized, now, one of the objectives
does not present the maximum value but a value that

can be very small for a certain practical application.
For example, in a biological experiment where it
want a cavy colony to grow to the maximum, we
should supply the three basic elements for the
maintenance of life in the colony: water, food and
oxygen. If we consider that 1Z  represents the water

supply, 2Z  represents the food supply and 3Z

represents the oxygen supply, it can analyzed the
alternatives F, G and H in relation to the chances of
survival of the colony. The alternative F  supplies the
maximum of water and feeding propitiating
necessary conditions for the growth of the colony,
however, the alternative F supplies the minimum
supply of oxygen; therefore, as the growth of the
colony happens it is very probable that the supply of
oxygen becomes insufficient, and it would cause the
death of the whole colony. The same reasoning can
be applied to the alternatives G and H. Thus, the
alternatives F, G and H, depending on the application
and of the value of the objective not optimized, could
become the worst solution alternatives.

In fact, the solutions for multi-objective problems,
of the type of the solutions represented by the
alternatives I, F, G and H are very rare. This kind of
solutions occur only in some cases where the
objectives are not conflicting. In this way, those
alternatives will not be consider in this example.

Analyzing Table 2 again, it can be observed that
the alternative A is the optimal solution considering
only the objective 1Z ; the alternatives B and C are

not optimal solutions in relation to any objective; the
alternative D is the optimal solution only considering
the objective 2Z  and the alternative E is the optimal

solution considering only the objective 3Z . Thus, the

alternatives A, D and E are non-dominated solutions,
and the alternatives B and C are dominated  solutions
or inferior. So, according to Pareto, the alternatives
A, D and E present the highest optimal degree in the
resolution of the problem, when we do not consider
the alternatives I, F, G and H.

Example 3: However, we can notice that different
domain levels exist. A dominated solution will
always be inferior in relation to some non-dominated
solution, but a dominated solution can be dominated
by other dominated solution. Those domain levels
provide a characterization of the feasible area of the
decision space, sorting the solutions in categories
with different levels of optimality. This case is shown
in Table 3. The alternatives A, D and E  are non-
dominated  solutions of the level 1. Eliminating those
alternatives and continuing the process, we
determined that the alternatives B, C and H are non-
dominated solutions of the level 2, because they are
the optimal solutions for each one of the objectives
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considered separately when we excluded the
solutions of the level 1. Therefore, the alternatives F
and G are non-dominated solutions of the level 3 and
the alternative I is a solution of the level 4.

TABLE 3 – 3o Example of the Pareto Methodology.
Alternative 1Z 2Z 3Z

A Level 1 5 8 7
B Level 2 4 9 2
C Level 2 4 4 4
D Level 1 3 10 6
E Level 1 2 9 8
F Level 3 1 7 5
G Level 3 2 5 3
H Level 2 3 3 7
I Level 4 1 6 1

Using this procedure, it can be verified that the
Pareto optimization process can be basically
described as being a search for non-dominated
solutions. This search consists in sorting the
candidates of solutions in several optimality levels
and, in this way, to obtain a group of solutions for the
multi-objective optimization problem. A variation of
the Pareto method would be the search of the inferior
solution instead of the search of the solutions of level
1. This procedure, known by the Noninferior Set
Estimation Method (NISE), was developed by Cohon
et al.7 and it was mainly applied for problems with
two objectives.

Example 4: The search procedure of the inferior
solution is shown in Table 4, where we wanted to
maximize the three objectives 1Z , 2Z  and 3Z . In

this case, all the alternatives of solution must be
compared. To facilitate the comparison we will adopt
the following approach: if two alternatives present
the same value for a certain objective each one
receives 1 point; if an alternative is better than the
other, the largest receives 2 points and the smallest
none. Thus, comparing the alternatives A and B in
relation to the objective 1Z , A is larger than B,

therefore it receives 2 points; in relation to the
objective 2Z , B is larger than A, and now B  receive 2

points; and in relation to the objective 3Z , A is larger

than B, so, A receives more 2 points. Continuing this
procedure we obtain: A = 16 points; B = 10 points; C
= 7 points; D = 14 points; and E = 13 points.
Therefore the inferior is the alternative C. However,
this method is clearly worse than the Pareto Method,
because this method supplies a group of non-inferior
solutions, and this group is larger than the group of
non-dominated solutions of level 1 determined by the
Pareto Method, that is, according to Cohon et al.7,
given a group of alternatives for solution of a multi-

objective problem, the NISE Method just selects the
worst alternative.

TABLE 4 – Search of the Inferior Solution.
Alternative 1Z 2Z 3Z

A Non-Inferior 5 8 7
B Non-Inferior 4 9 2
C Inferior 4 4 4
D Non-Inferior 3 10 6
E Non-Inferior 2 9 8

Example 5: To illustrate the Pareto Method applied in
the orbital maneuvers, we presented in Table 5
several maneuvers that can be executed by a satellite.
Each one of the maneuvers, needs a velocity
increment v∆ , a time T  and it generates a position
error δθ . We wanted to find a maneuver that
minimizes v∆ , T  and δθ , but these objectives are
conflicting. Therefore, a solution that minimizes the
three objectives simultaneously doesn't exist. Thus,
we adopted the Pareto methodology and selected the
non-dominated solutions for the problem.

Examining Table 5, we can select the maneuvers
4, 12, and 1 as non-dominated solutions. Thus, each
one of them minimizes δθ , v∆  and T  respectively.
However, we can continue the classification of the
solutions to obtain other groups with different
optimality levels: level 1, maneuvers 4, 12 and 1;
level 2, maneuvers 5, 11 and 2; level 3, maneuvers 6,
10 and 3; level 4, maneuvers 7 and 9; level 5,
maneuvers 8. With this classification we can choose
the maneuver that best satisfies the constraints. We
could choose any one of the maneuvers of the
optimality level 1 to obtain the highest Pareto
optimality level in the satisfaction of the problem.

TABLE 5 – Optimal Maneuvers of the 5o Example.
δθ v∆ T

1 0,565637 1,07333 1660
2 0,445267 1,02667 1700
3 0,314329 0,99600 1800
4 0,118357 0,88733 2110
5 0,217551 0,85493 2250
6 0,241902 0,84267 2305
7 0,275673 0,80400 2550
8 0,278017 0,79867 2600
9 0,291305 0,78667 2705
10 0,289064 0,77867 2800
11 0,314594 0,76400 2910
12 0,337307 0,76212 2990

This methodology has been used, without
practically any improvement, since 1909 when it was
presented by Pareto8. Some authors use the Pareto
Methodology to find the solutions of level 1 but after
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this, they adopt weights or influence factors to choose
one of the solutions of the level 1. Therefore, the
application of the Pareto Methodology becomes
unnecessary, because in fact, the method of the
influence factors, that was presented in the previous
item, that is being used. Thus, the Pareto
Methodology supplies a group of solutions,
candidates to the optimal solution, but it is not
capable to find the best solution from this group.

TABLE 6 – Normalized Optimal Maneuvers of the
5o Example

rad 7,0=máxδθ    km/s 2,1=máxv∆    s 3000=máxT

máxδθδθ máxvv ∆∆ máxTT

1 0,808053 0,894442 0,533333
2 0,636096 0,855558 0,566667
3 0,449041 0,830000 0,600000
4 0,169081 0,739442 0,703333
5 0,310787 0,712442 0,750000
6 0,345574 0,702225 0,768333
7 0,393819 0,670000 0,850000
8 0,397167 0,665558 0,866667
9 0,416150 0,655558 0,901667
10 0,412949 0,648892 0,933333
11 0,449420 0,636667 0,970000
12 0,481867 0,635100 0,996667

THE SMALLEST LOSS CRITERION

In practical applications, it would be convenient
to apply a methodology capable to find the solution
that assists all the objectives. The Pareto
Optimization Method supplies a group of solutions
where, according to Pareto, each solution present the
same optimality degree. In the 5th Example the
solutions of the optimality level 1 are the maneuvers
4, 12 and 1. But which maneuver should be chosen?
All of them are optimal solutions for a certain
objective; If we choose any of those solutions, we
would also be choosing a certain objective as priority,
and in this way, we would also be choosing a certain
objective as priority. In this way we would be going
back to the problem of choosing influence factors to
the objectives, which is an optimization process by
itself. Thus, the Pareto methodology becomes
unnecessary because we could selected the influence
factors before the Pareto optimization process and
decide which is the best maneuver to be used.
Therefore, it seems that the optimal solution is not
possible to be found, unless we change the definition
of optimal solution for the multi-objective problem.
The definition for multi-objective optima solution
could be: the solution of smaller loss for all the
objectives. We can call this solution, sub-optimal
solution of the multi-objective problem, since the
optimal "classic" solution is not possible to obtain.

Fig. 4 – Levels 1 and 2 of the 5o Example.

Fig. 5 – Levels 1, 2 and 3 of the 5o Example.

However, if we draw in a three-dimensional graph
the points of the maneuvers 4, 12 and 1, and 5, 11
and 2, for the levels 1 and 2, respectively, it will be
obtained the graph shown in Figure 4. The triangles
blue and green represent the levels of Pareto
optimality. Figure 5 shows the triangles that
symbolize the levels 1, 2 and 3. The vertices of the
triangles represent the optimal solutions for each one
of the objectives for the different levels. These
solutions are extreme solutions, because each one of
them consider only one objective as priority. To
obtain a solution that does not assume any objective
as priority, it would be necessary to choose an
intermediary solution. Therefore, we should adopt an
approach for this choice, because otherwise,
considering the objectives equally, the choice would
be aleatory. This approach can be based on the
following argument:

Argument 1: We can observe that Nature, presents
solutions with an accentuated symmetry: the bodies
of the living beings are generally presented in a
bilateral symmetry; the format of the crystals; the
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symmetry of the subatomic particles; the seasons; the
mass distribution in the planets and in the planetary
systems, are examples of symmetry that is resulting
of the interactions among the several elements of
Nature. These interactions, generate many
phenomenon that can be treated as multi-objective
problems, which are solved in some way, generating
solutions that are the optimal solutions found by
Nature after billions of years of evolution and
interactions. Therefore, the multi-objective problem
can be considered as a resolvable problem. And, we
can infer by the observation of Nature, that perhaps,
this kind of problem has only one solution. The best
example of this is our own body. We lived in a
environment where our survival depends on many
factors that generate a complex multi-objective
problem. However, we are perfectly adapted to this
environment, that is, we are the optimal solution of
the multi-objective problem of the human evolution.

Thus, it is expected that in the Engineering multi-
objective problems should be found solutions with
the same symmetry. For this reason, in multi-
objective problems, an extreme solution cannot be
considered as the optimal solution. Only an
intermediary solution is capable to take in
consideration the symmetry between the candidates
to the optimal solution. A possibility to find this
solution is given by the following criterion:

Criterion 1: An attempt to find this intermediary
solution would be to find the barycenter of the
triangle shown in the Figure 4 and 5, normalized by
the maximal of the objectives. This normalization
(Table 6) is necessary because otherwise the solution
depends on the dimension of each objective. The
barycenter is the solution which generates the
smallest loss in relation to all the objectives. Thus,
the optimal solution for the multi-objective problem
would be the central point of the figure that has as
vertexes the optimal solutions for each objective.
Therefore, for problems with three objectives the
solution would be in the center of a normalized
triangle, for n objectives the solution would be in the
center of a normalized n-dimensional figure. This
criterion we call the Smallest Loss Criterion. In
Figure 6 we have an example of this criterion applied
to a problem with three conflicting objectives. In this
example, S1, S2 and S3 are the optimal solutions for
each one of the objectives, considered separately. B
is the barycenter of the triangle formed by the

segments 21SS , 32SS  and 13SS . By the
barycenter definition, the distance from B  to the
vertexes of the triangle represented by the solutions
S1, S2 and S3 is the same. So, if the barycenter B is
adopted as a solution for the multi-objective problem,
the segment BS 1  represents the loss in relation to

the objective 1, and in the same way, the segments
BS 2  and BS 3  represent the loss in relation to the

objectives 2 and 3 respectively. Thus, from the
Figure 6 we can conclude that if the three objectives
are equally considered, the best solution is that one
which coincides with the barycenter of the triangle.

B

S1

S2 S3

loss in relation to the objective 2

loss in relation
to the objective 1

loss in relation
to the objective 3

Fig. 6 – The Smallest Loss Creiterion.

Returning to the 5th Example and using the
Smallest Loss Criterion, the best solution considering
the triangle of level 1 and making the calculations
with normalized measures (Table 6), is given by: δθ
= 0,340434 rad; v∆  = 0,907593 km/s; t  = 2233,333
s (Criterion 1). However, we don't have this
maneuver in the Table 5. Thus, the best maneuver
seems to be that whose parameters are the closest of
the coordinates of the barycenter (Criterion 1A).
Calculating the distances between the barycenter and
the points that represent the maneuvers, using the
Table 6, we concluded that the best maneuver to be
applied is the maneuver 6. Other possibility, would
be to use the program that calculates the maneuvers
again, with the time of 2233,333 s as entrance, to
calculate a maneuver that approaches the coordinates
of the barycenter (Criterion 1B).

Example 6: To exemplify this methodology applied
in a satellite constellation, we will use as example a
constellation composed by three satellites with
circular and equatorial nominal orbits. Therefore, the
nominal elements of the satellites are given by:

e =        0,000000 a =  7010,000000 km
l =  7010,000000 km i =        0,000000 rad
ω =        0,000000 rad Ù    =        0,000000 rad

To assist the specifications of the mission, the
satellites should be positioned in such a way that the
difference between the true longitudes ( 1θ∆ , 2θ∆

and 3θ∆ ) should be 2,09439435 rad (120 degrees). It

may be assumed that in the initial instant the satellite
1 is entering in the visibility cone of the ground
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tracking station, and the measures of X , Y , Z , X& ,

Y&  and Z&  in the inertial reference system are given
by:

X =  7000,00000000 X& =        0,00000000
Y =        0,00000000 Y& =        7,54605517
Z =        0,00000000 Z& =        0,00000000

Thus, we determined the actual elements of the
satellite 1, where M  is the mean anomaly, u  is the
eccentric anomaly, f  it is the true anomaly and θ  is

the true longitude.

Satellite 1:

1a =  7000,00000000 1Ù =        0,00000000

1e =        0,00000000 1ω =        0,00000000

1i =        0,00000000 1M =        0,00000000

1u =        0,00000000 1f =        0,00000000

1θ =        0,00000000

The difference between the semi-major axis 1a  of

the actual orbit and the semi-major axis of the
nominal orbit, is 1a∆  = -10 km. The other elements

are in agreement with the nominal orbit. However we
will consider that 1a∆  is larger than the allowed

variation and therefore, the orbit should be corrected.
With the orbital propagation we can obtain the actual
elements of the others satellites.

Satellite 2:

2a =  7002,00000000 2Ù =        0,00000000

2e =        0,00000000 2ω =        0,00000000

2i =        0,00000000 2M =        1,91986218

2u =        1,91986218 2f =        1,91986218

2θ =        1,91986218

Satellite 3:

3a =  7005,00000000 3Ù =        0,00000000

3e =        0,00000000 3ω =        0,00000000

3i =        0,00000000 3M =        4,36332313

3u =        4,36332313 3f =        4,36332313

3θ =        4,36332313

With the actual true longitudes 1θ , 2θ  and 3θ  we

can calculate the position constraints 1δθ , 2δθ ,

3δθ  and δθ , which represent the position error of

the satellites, as shown in the Figure 7:

θ1 = 0

θ2

θ3

∆θ1

∆θ2

∆θ3

∆θ1 = ∆θ2 = ∆θ3

Satellite 1

Satellite 3

Satellite 2

Fig. 7 – Nominal position of the satellites.

21 θθ ≤ :   ( )
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 2
121

π
θθδθ −−= (20)

12 θθ < :   ( )
3

 2
 2 211

π
θθπδθ −+−= (21)

32 θθ ≤ :   ( )
3

 2
232

π
θθδθ −−= (22)

23 θθ < :   ( )
3

 2
 2 322

π
θθπδθ −+−= (23)

13 θθ ≤ :   ( )
3

 2
313

π
θθδθ −−= (24)

31 θθ < :   ( )
3

 2
 2 133

π
θθπδθ −+−= (25)

3
321 δθδθδθ

δθ
++

= (26)

If the difference between the nominal and actual
elements, and the position constraint θ∆  do not
satisfy the tolerance previously specified, at least a
correction maneuver becomes necessary. Otherwise
we consider the actual elements and propagate the
orbit of the satellite 1 to predict which will be the
elements of this satellite in the next passage by the
ground tracking station. After this, the control
program waits the next satellite to enter in the
visibility area of the ground tracking station, and in
this way, the process described above repeats.

Considering that it is necessary to execute the
maneuver, several possible maneuvers are calculated,
each one of them with different values of the semi-
major axis of the final orbit and different values of
the time spent for the maneuver. The semi-major axis
and the time, vary from predefined values belonging
to an operation range for the satellite. Thus we obtain
the orbital elements of the transfer orbit, where 1α  is

the true anomaly of the location of the first impulse,

2α  is the true anomaly of the location of the second

impulse, 1v∆  and 2v∆  are the velocity increment

generated by the first and second impulses, v∆ is the

total velocity increment and t  is the time spent.
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Maneuver 1:  == nominalfinal aa 7010 km

a =  7006,23867081 1α =        0,00000000

e =        0,01326311 2α =        0,10768541

ω =        4,76633701 t =    100,00000000

1v∆ =        0,09993920 2v∆ =        0,09994003

v∆ =        0,19987923

Maneuver 2:  == nominalfinal aa  0001,1 7010,701 km

a =  7006,63796680 1α =        0,00000000

e =        0,01351801 2α =        0,11306121

ω =        4,76903787 t =    105,00000000

1v∆ =        0,10184595 2v∆ =        0,10184694

v∆ =        0,20369289

Maneuver 3:  == nominalfinal aa  0002,1 7011,402 km

a =  7007,44799235 1α =        0,00000000

e =        0,01575290 2α =        0,10336250

ω =        4,76418552 t =      96,00000000

1v∆ =        0,11870424 2v∆ =        0,11870527

v∆ =        0,23740951

Maneuver 4:  == nominalfinal aa  003,1 7012,103 km

a =  7007,55340389 1α =        0,00000000

e =        0,01459562 2α =        0,11842733

ω =        4,77174271 t =    110,00000000

1v∆ =        0,10994625 2v∆ =        0,10994758

v∆ =        0,21989383

Maneuver 5:  == nominalfinal aa  0004,1 7012,804 km

a =  7008,02403816 1α =        0,00000000

e =        0,01516596 2α =        0,12057153

ω =        4,77282558 t =    112,00000000

1v∆ =        0,11423413 2v∆ =        0,11423564

v∆ =        0,22846977

Maneuver 6:  == nominalfinal aa  0005,1 7013,505 km

a =  7008,88406240 1α =        0,00000000

e =        0,01739282 2α =        0,11087445

ω =        4,76797259 t =    103,00000000

1v∆ =        0,13103180 2v∆ =        0,13103334

v∆ =        0,26206514

Maneuver 7:  == nominalfinal aa  006,1 7014,206 km

a =  7010,12115852 1α =        0,00000000

e =        0,02070642 2α =        0,09794970

ω =        4,76149997 t =      91,00000000

1v∆ =        0,15603114 2v∆ =        0,15603265

v∆ =        0,31206379

Maneuver 8:  == nominalfinal aa  0007,1 7014,907 km

a =  7009,54050147 1α =        0,00000000

e =        0,01719814 2α =        0,12377333

ω =        0,01719814 t =    115,00000000

1v∆ =        0,12952163 2v∆ =        0,12952373

v∆ =        0,25904536

Maneuver 9:  == nominalfinal aa  0008,1 7015,608 km

a =  7010,17329534 1α =        0,00000000

e =        0,01832564 2α =        0,12161165

ω =        4,77338020 t =    113,00000000

1v∆ =        0,13801639 2v∆ =        0,13801865

v∆ =        0,27603504

TABLE 7 – Normalized Optimal Maneuvers of the
6o Example.

mÁxδθ  = 0,7 rad    mÁxv∆  = 1,1 km/s    mÁxT  = 200 s

maxδθδθ maxvv ∆∆ maxTT

1 0,33237709 0,18170839 0,5000000
2 0,33237378 0,18517535 0,5250000
3 0,33237971 0,21582683 0,4800000
4 0,33237048 0,19990348 0,5500000
5 0,33236917 0,20769979 0,5600000
6 0,33237510 0,23824104 0,5150000
7 0,33238301 0,28369435 0,4550000
8 0,33236720 0,23549578 0,5750000
9 0,33236851 0,25094094 0,5650000

Examining Table 7 we can select the maneuvers
8, 1 and 7 as non-dominated solutions for the entire
group of candidates solution (level 1). The
coordinates of the barycenter, using normalized
values, are (0,33237577; 0,23363284; 0,510), which
are equivalent to δθ  = 0,23266304 rad; v∆  =
0,25699613 km/s; Time  = 102 s. Calculating the
distances between the barycenter and the points
determined by the maneuvers (Criterion 1A), it is
found:

d(B, m1) = 0,05287862      d(B, m6) = 0,00678772
d(B, m2) = 0,05072601      d(B, m7) = 0,07437173
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d(B, m3) = 0,03488630      d(B, m8) = 0,06502669
d(B, m4) = 0,05232275      d(B, m9) = 0,05765909
d(B, m5) = 0,05632516      d(B, m9) = 0,05765909

Using the program to calculate the optimal
maneuver again, with time constraint fixed in 102 s,
which is the time of the maneuver equivalent to the
barycenter (Criterion 1B), we obtain:

a =  7008,92581157 1α =        0,00000000

e =        0,01756316 2α =        0,10979799

ω =        4,76743295 t =    102,00000000

1v∆ =        0,13231807 2v∆ =        0,13231961

v∆ =        0,26463768

which generate a position constraint maxδθδθ =

0,22571391, a velocity increment maxvv ∆∆ =

0,24057971 and the time spent in the maneuver

maxTT = 0,510. Thus, the distance between the

barycenter and the point determined by the maneuver
is given by: d (b, m) = 0,10688784.

Comparing all the distances calculated, it can be
noticed that the maneuver that better approaches the
coordinates of the barycenter is the maneuver 6. In
this case, even calculating the transfer maneuver
again, using as input the time specified by the
barycenter (Criterion 1B), it was not possible to
obtain a better maneuver than those that had already
been calculated (Criterion 1A). In this way, we chose
the maneuver 6 as the best maneuver.

CONCLUSION

In this article, which is part of the work developed
by Rocco9, the problem of orbital station keeping of
satellite constellations was studied as a problem of
multi-objective optimization. We considered as
example, a constellation composed    by n  = 3
satellites. However, the multi-objective optimization
method and the software developed for the control of
the constellation allow easily to consider more than 3
satellites. But the concept for the problem for n  = 3
is identical to the problem for n  > 3, but in this case,
we would have a larger computer effort. So, we opted
to consider n  = 3.

The methodologies found in the literature,
generally began the problem with an multi-objective
approach but ended reducing the problem to the
mono-objective case, by means of simplifications or
influence factors. Or, when the approach was really
multi-objective, the found result was a group of
solutions candidates to the optimal solution, and in
this case, for the choice of the optimal solution we

should use other approaches external to the problem.
The best methodology found in the literature, that
bases on Pareto8, present this deficiency, as it was
shown. Until today, several authors use the Pareto
Criterion with small variations. Therefore, it seems
that doesn't exist in the revised literature any method
really capable to accomplish the multi-objective
optimization, considering all the objectives of the
problem equally. Thus, it was tried in some way, to
create a methodology that at least to consider equally
all the objectives. This methodology is based on what
we called Smallest Loss Criterion. Using this
criterion, it was possible to consider equally
conflicting objectives and to obtain a single solution
for the problem, which for Engineering applications
is very interesting. It was considered in the examples
presented in this work three objectives, but the
Smallest Loss Criterion allow to consider so many
objectives as necessary.

The software developed was tested and it was
proven that it is capable to generate reliable results. It
was developed in modules to allow to be enlarged
considering a larger number of satellites and/or other
geometric configurations of the constellation
according to the need.
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