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Abstract. In this paper the Generalized Extremal Optimization algorithm is presented.
Recently proposed as a tool to be applied on complex optimal design problems, it is of easy
implementation, does not make use of derivatives and can be applied to unconstrained or
constrained problems, non-convex or disjoint design spaces, with any combination of
continuous, discrete or integer variables. It is a global search meta-heuristic, as the Genetic
Algorithm and the Simulated Annealing, but with the a priori advantage of having only one
free parameter to adjust. Here, the efficacy of the Generalized Extremal Optimization method
to deal with a complex design space, with non-linear equality and/or inequality constraints, is
illustrated by a numerical example with a test function and the optimal design of a heat pipe
for a space application.
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1. INTRODUCTION

Recently, Boettcher and Percus (2001) proposed a new optimization algorithm that, as the
Genetic Algorithm (GA), is based on the principles of natural selection, but that does not uses
the GA’s framework of population reproduction. The backbone of their algorithm is built over
a simplified model of natural selection, developed to show the emergence of Self-Organized
Criticality (SOC) in ecosystems . Evolution in this model is driven by a process where the
weakest species in the population, together with its nearest neighbors, is always forced to
mutate. The dynamics of this extremal process showed characteristics of SOC, such as
punctuated equilibrium, that is also observed in natural ecosystems (Bak & Sneppen, 1993).



Boettcher and Percus (2001) have adapted the evolutionary model of Bak and Sneppel (1993)
to tackle hard problems in combinatorial optimization, calling their algorithm Extremal
Optimization (EO). To improve performance and avoid a search based only on the forced
mutation of the weakest species, they modified the basic EO algorithm introducing an
adjustable parameter so that the search could escape local optima. This variation of the EO
algorithm was called τ-EO and showed superior performance over the EO even in the cases
where the later worked well. However, a drawback of τ-EO (and also EO) is that for each new
optimization problem assessed, a new way to define the fitness of the design variables has to
be created (Boettcher & Percus, 2001). Moreover, to our knowledge it has been applied so far
to combinatorial problems with no implementation to continuous functions.

In order to make the EO method easily applicable to a broad class of design optimization
problems, Sousa and Ramos (2002) have proposed a generalization of the EO method called
Generalized Extremal Optimization (GEO). As the Simulated Annealing (SA) and the GA, it
is a stochastic method, does not make use of derivatives and can be applied to nonconvex or
disjoint problems. It can also deal with any kind of variable, either continuous, discrete or
integer. In fact, The GEO method has proved to be competitive to the SA and the GA (Sousa
& Ramos, 2002; Sousa et al).

In this paper, the efficacy of the GEO method to deal with a constrained design space,
which may contain non-linear equally and inequality constraints, is illustrated by a numerical
example and a real design application. In the numerical example, the performance of the GEO
is compared to a standard GA and the Progressive Genetic Algorithm (PGA) (Guan & Aral,
1999) in finding the solution of a constrained test function. In the optimal design problem, the
method is applied to the optimization of a heat pipe (HP) for a space application. This
problem pose difficulties to the GEO such as an objective function that presents design
variables with strong non-linear interactions, subject to multiple constraints, being considered
unsuitable to be solved by traditional gradient based optimization methods (Rajesh &
Ravindran, 1997). The HP is optimized in regard to its total mass, given a desirable heat
transfer rate and boundary conditions on the condenser. A total of 18 constraints are taken
into account, which include operational, dimensional and structural ones.  Temperature
dependent fluid properties are considered and the calculations are done for steady state
conditions. Several runs were performed under different values of heat transfer rate and
temperature at the condenser. Integral optimal characteristics were obtained.

2. THE GENERALIZED EXTREMAL OPTIMIZATION ALGORITHM

Self-organized criticality (SOC) has been used to explain the behavior of complex systems
in such different areas as geology, economy and biology (Bak, 1996). The theory of SOC
states that large interactive systems evolves naturally to a critical state where a single change
in one of its elements generates “avalanches” that can reach any number of elements on the
system. The probability distribution of the sizes “s” of these avalanches is described by a
power law in the form P(s) ~ s-τ, where τ is a positive parameter. That is, smaller avalanches
are more likely to occur than big ones, but even avalanches as big as the whole system may
occur with a non-negligible probability.  To show that SOC could explain features of systems
like the natural evolution, Bak and Sneepen (1993) developed a simplified model of an
ecosystem in which species are placed side by side on a line with periodic boundary
conditions. To each species, a fitness number is assigned randomly, with uniform distribution,
in the range [0,1]. The least adapted species, the one with the least fitness, is then forced to
mutate, and a new random number assigned to it. The change in the fitness of the least
adapted species alters the fitness landscape of their neighbors and, to cope with that, new
random numbers are also assigned to them, even if they are well adapted. After some



iterations, the system evolves to a critical state where all species have fitness above a critical
threshold. However, the dynamics of the system eventually causes a number of species to fall
below the critical threshold in avalanches that can be as big as the whole system. An
optimization heuristic based on the Bak-Sneppen model would evolve solutions quickly,
systematically mutating the worst individuals, whereas at the same time preserving
throughout the search process, the possibility of probing different regions of the design space
(via avalanches). This would enable the algorithm to escape local optima.

Inspired by the Bak-Sneppen model, Boettcher and Percus (2001) devised the EO
method, where each variable is considered as one species and to each of them is assigned a
fitness number that represents the level of adaptability of that species. In the τ-EO
implementation of the method, the ecosystem of N variables “evolves” (that is, search the
design space for the global optimum), as one variable is mutated with probability Pk ∝ k-τ.
Where, k is the rank of the variable. The rank varies from 1, to the variable with least fitness,
to n, for the variable with the best fitness. Hence, while privileging the variable with least
rank to mutate, the algorithm makes all variables accessible to mutate, making it able to
“jump” out of regions of local minimum. In a practical implementation of the τ-EO method,
making τ → 0 the algorithm becomes a random walk, while for τ → ∞, we have a
deterministic search.

Although already been successfully applied to hard combinatorial problems, as pointed
out by Boettcher and Percus (2001), referring collectively to both the basic EO and the τ-EO,
“a drawback to EO is that a general definition of fitness for the individual variables may
prove ambiguous or even impossible” (Boettcher & Percus, 2001). What means that for each
new optimization problem assessed, a new way to define the fitness of the design variables
has to be created. Moreover, to our knowledge it has been applied so far to combinatorial
problems with no implementation to continuous variables. In order to make the EO method
applicable to a broad class of design optimization problems, without concern to how the
fitness of the design variables are assigned, and capable of tackle continuous, discrete or
integer variables, a generalization of the EO method was devised (Sousa and Ramos, 2002).
In this new algorithm, named Generalized Extremal Optimization, the fitness assignment is
not done directly to the design variables, but to a “population of species” that encodes the
variables. Each species receives its fitness, and eventually mutates, following general rules.

In the GEO algorithm each species is represented by a bit in a string, that represents the
entire ecosystem of species. The variables are encoded in this string that is similar to a
chromosome in the canonical GA. But different from the GA, in the GEO there is not a
population of strings (or solutions), but a population of bits represented by one string (see
Figure 1). To each bit of this string is assigned a fitness number that indicates the level of
adaptability of that bit on the population, according to the gain or loss that one has on the
value of the objective function, when the bit is mutated (flipped).

Figure 1 - The population of bits. In this example each design variable is encoded in 6 bits.



The GEO algorithm is written as:

1. Initialize randomly a binary string of length L that encodes N design variables of bit
length lj (j = 1, N). For the initial configuration C of bits, calculate the objective function
value V and set Cbest = C and Vbest = V.
2. For each bit i of the string, at a given iteration:

a) flip the bit (from 0 to 1 or 1 to 0) and calculate the objective function value Vi of the
string configuration Ci,

b) set the bit fitness as ∆Vi = (Vi - Vbest). It indicates the relative gain (or loss) that one
has in mutating the bit, compared to the best objective function value found so far.

c) return the bit to its original value.
3) Rank the bits according to their fitness values, from k = 1 for the least adapted bit to k =

L for the best adapted. In a minimization problem, higher values of ∆Vi will have higher
ranking, and otherwise for maximization problems. If two or more bits have the same
fitness, rank them randomly with uniform distribution.

4) Choose with equal probability a candidate bit i to mutate. Generate a random number
RAN with uniform distribution in the range [0,1]. If the mutating probability Pi(k) = k−τ

of the chosen bit is equal or greater than RAN the bit is confirmed to mutate. Otherwise,
the process is repeated until a bit is confirmed to mutate.

5) For the mutated bit set C = Ci and V = Vi.
6) If  V  <  Vbest (V  >  Vbest, for a maximization problem) then set Vbest = V and Cbest = C.
7) Repeat steps 2 to 6 until a given stopping criteria is reached.
8) Return Cbest and Vbest.

Note that in step 4 any bit can be chosen to mutate, but the probability of a given chosen
bit be confirmed to mutate is dependent on its rank position. The ones more adapted (with
higher rank values) are less prone to have its mutation confirmed and only the least adapted
bit (rank = 1) is always confirmed to mutate, if chosen. The probability of mutating the
chosen bit is regulated by the adjustable parameter τ. The higher the value of τ, the smaller
the chance of a bit (with rank greater than 1) be mutated. The possibility of making moves
that do not improve the value of the objective function is what allows the algorithm to escape
from local optima.

Equality and inequality constraints are taken into account simply setting a high (for a
minimization problem) or low (for a maximization problem) fitness value to the bit that, when
flipped, leads the configuration to an unfeasible region of the design space. Side constraints
are directly applied through the encoding of the design variables. Note that the move to an
infeasible region is not prohibited, since any bit has a chance to mutate according to the P(k)
distribution. Moreover, no special condition is posed for the beginning of the search process,
which can even start from an infeasible region. It must be pointed out here, that other ways to
take into account constraints in GEO may also be implemented, such as a penalty function
approach (Barbosa & Lemonge, 2002). However, the approach described above is very simple
to apply and does not introduce any new adjustable parameter in the algorithm.

A slightly different implementation of the GEO algorithm can be obtained, changing the
way the bits are ranked and mutated. Instead of ranking all the bits according to step 3, we
rank them separately for each variable. In this way the bits of each variable will have a rank
ranging from 1 to lj. In step 4 one bit of each variable is chosen and mutated in the same way
of GEO, but the process is done independently for each variable. Hence, at each iteration, N
bits are mutated in this new implementation of GEO, one per variable, while in its canonical
form only one bit is mutated per iteration. We named this variation of the GEO algorithm



GEOvar. The idea behind GEOvar is to try to improve all variables simultaneously, at each
algorithm iteration, as an attempt to speed up the process of searching the global minimum.

3. TEST FUNCTION EXAMPLE

In order to illustrate the performance of the GEO algorithm in a constrained optimization
problem, we compared it to a standard GA and the PGA, in a test function subject to non-
linear equality and inequality constraints. The optimization problem is stated as follows:

Minimize
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This test function has a global minimum at X = {0,4,0}, where the objective function
value is zero. It was used by Guan and Aral (1999) to assess the performance of the PGA,
which was specially developed to tackle problems with non-linear equality and inequality
constraints. In the PGA the search process is divided in two phases. First, the non-linear
constraints are linearized and then, the simplified problem is solved by a conventional GA.
The GA works on sub-domains of the design variables. The idea behind the PGA approach is
to transform a complex optimization problem with nonlinear constraints in a series of
simplified problems that are solved by a GA. In the PGA the first derivatives of the
constraints have to be calculated, while the derivatives of the objective function may also be
used to increase the performance of the algorithm, if available.

Guan and Aral (1999) compared the performance of the PGA to find the optimum of the
test function with the one of a standard GA. The standard GA used a population of 50
individuals and the search for the optimum stopped after 50 generations, what resulted in a
value of 2500 for the number of function evaluations (nfe) at the end of each search
performed with the standard GA. On the other hand, no information could be retrieved from
the paper of Guan and Aral (1999) that could lead to an estimation of nfe for the PGA runs.
Hence, for comparison purposes, we used as the stopping criteria for the GEOs the same one
used for the standard GA, that is, the GEOs stopped when nfe ≥ 2500. Since the performance
of the GEOs are influenced by the value of τ, a search in the interval [0.25, 3.00] was
performed to find out the value of τ that provided the best results in the search for the
optimum of the objective function. For each GEO, at a given value of τ, were performed 50
independent runs. As can be seen on Figure 2, better results were obtained for GEOvar at τ =
1.75, where the exact solution was found seven times out of 50 runs, with an average value
for the minimum value of F(X) of 0.0053. For the GEO, the exact solution was found in all
runs performed for τ in the range [1.00, 3.00].
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Figure 2 – Average of the best values of the objective function as a function of τ.

In Table 1, the results obtained by Guam and Aral for the standard GA and the PGA are
shown.

Table 1. Guam and Aral results for the test functiona.
Standard GA with penalty

functiona
PGAa

γ = 0.1

V
ar

ia
b

le

Exact
solution

β = 10 β = 100
Search start at

{2,0,0}
Search start at

{1.4,1,1}
F(X) 0.0000 0.18035 0.00264 0.0000 0.0000

aFrom Guan and Aral (1999) ; β = penalty coefficient ; γ = interval contraction coefficient.

From the results of Figure 2 and Table 1, it can be seen that the GEO algorithm
performed clearly better than the GEOvar and the standard GA in the range τ ∈ [1.0,3.0]. A
direct comparison between the performance of the GEO algorithms and the PGA in terms of
nfe was not possible since no information was given concerning the nfe necessary for the later
to converge. Nevertheless, it is mentioned by Guam and Aral (1999) that the GA seemed to
have required fewer computations than the PGA to find the solutions, what indicates that the
GEO, that used the same nfe that the GA as stopping criteria, may also have performed better
than the PGA. Moreover, as opposed to the PGA, which requires the constraint functions to
be first-order continuously differentiable, both GEO and GEOvar algorithms can tackle the
constraints regardless of their functional characteristics.

4. OPTIMIZATION OF A HEAT PIPE FOR A SPACE APPLICATION

Heat Pipes (HPs) are thermal devices used to transfer high amounts of heat over long
distances with a minimum temperature gradient. Although their concept had been devised in
the late 1940’s, it was from the mid-1960’s that they started to be developed and used in
engineering applications, that now range from oil ducts to spacecraft (Peterson, 1994). In its
basic form, the HP is a hermetically sealed tube-type container with a porous structure placed
on its internal walls and filled with a working fluid. Vapor occupies the center of the tube
(vapor core) whereas liquid fills the porous structure (wick). When operating, liquid at the
evaporator side of the HP evaporates, and vapor moves through the center of the tube to the
condenser, where it condenses. At the same time, liquid flows through the wick from the
condenser to the evaporator due to the action of capillary forces. This heat-mass transfer



mechanism can transport great amounts of heat, from the evaporator to the condenser with
little temperature drop between the two parts. In Figure 3 a drawing of the HP concept is
shown.

Figure 3 – Concept of operation of a conventional heat pipe.

The materials of the container’s wall and wick, as well as the working fluid are chosen
depending on the application for the HP and their compatibility.  There exists also a variety of
wick types available for usage. Details of HP operating, materials compatibility, testing and
technologies can be found elsewhere (for example, in Peterson, 1994; or Faghri, 1995).

In any space application, one of the main concerns is to keep the total mass of the space
platform as low as possible. Hence, the design of HPs for this kind of application focus on a
desired performance while keeping its mass as low as possible. In the problem tackled here,
the objective function to be minimized is the total mass of the HP (Mtotal) for a desired heat
transfer rate (Q), given a constant temperature at the outside surface of the condenser section
(Tsi).  The design variables are the wick’s mesh number (N), the diameter of the vapor core
(dv), the diameter of the wick’s wire (d), the thickness of wick (tw), the thickness of the
container’s wall (tt), the length of the evaporator section (Le) and the length of the condenser
section (Lc). The length of the adiabatic section (La) is dependent on the application and here
was fixed equal to 0.5 m.

A total of 18 constraints are applied to the HP, which can be divided in dimensional,
operating and structural. The dimensional constraints are mainly concerned with practical
aspects of manufacture and installation of the HP, such as defining feasible minimum lengths
for the evaporator and condenser section. Operational constraints are posed to assure that the
HP will operate properly while keeping the temperature of the equipment from which heat is
being removed within a specified operational range. Finally, since the HP is essentially a
pressurized system, structural constraints are applied so that the burst of the container is
prevented. From these 18 constraints, 7 are side constraints, applied to the design variables,
and 11 are inequality constraints.

In this paper, we considered three different working fluids: ethanol, methanol and
ammonia. Stainless Steel (SS 304) was used as the material of the container since it is
compatible with all these fluids. The wick is of the mesh type and also made of SS 304.
Results were obtained for a heat transfer rate (Q) and a condenser temperature (Tsi) ranging
from 25.0 W to 100.0 W and from –15oC to 30oC, respectively. The maximum temperature
allowed on the external surface of the evaporator was fixed in 45.0 oC. Data from Dunn and
Reay (1976) were used to obtain interpolation curves for the temperature dependent fluid
properties.

The first decision to be made on the utilization of GEO and GEOvar is the number of bits
used to each design variable. These values depend on the precision one desires for each



variable. For the present problem, the design parameter that required the bigger number of
bits to encode its value within the desired precision was Lc. It required 14 bits and, for the
sake of simplicity and considering that the computational cost of estimating the objective
function was small, that was the number also used for the other design variables.

Since the performances of the GEO and GEOvar are dependent on the parameter τ, we
first made a study to determine their best value, for each algorithm. We set Tsi = 0.0 oC and Q
= 25.0 W and run GEO and GEOvar for 105 function evaluations. Fifty independent runs were
made for each algorithm, and for various values of τ, in the range [0.25,3.00], in steps of 0.25.
The initialization of the string of bits at each run was done randomly.

From these numerical tests, since the GEO algorithm performed worse than the GEOvar,
we decided to use only the later in the remaining simulations, for all operational conditions.
The values of τ used on these runs were τ = 2.75 for the ethanol, τ =  2.00 for the methanol
and τ =  1.75 for the ammonia. The stopping criteria was modified so that the search stopped
after the number of function evaluations reached 106.

 In Figure 4, the minimum values found for the HP total mass are plotted, for all
operational conditions.
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Figure 4 – Minimum HP mass found for ethanol, methanol and ammonia, at different
operational conditions.

It can be seen from these results that for moderate heat flux rates (up to 50 W), the
ammonia and methanol HPs display similar results in terms of optimal mass, while for high
heat transport rates (as for Q = 100 W), the HP filled with ammonia shows considerably better
performance. In practice this means that, for applications which require the transport of
moderate heat flow rates, cheaper methanol HPs can be used, whereas at higher heat transport
rates, the ammonia HP should be utilized.

We also note that the higher the heat to be transferred, the higher the HP total mass.
Although this is an expected result, the apparent non-linearity of the HP mass with Q means
that for some applications there is a theoretical possibility that the use of two HPs of a given
heat transfer capability can yield a better performance, in terms of mass optimization, than the
use of an unique HP with double capability. From the curves in Figure 3, this non-linearity is
more pronounced as the temperature on the external surface of the condenser is increased.

Finally, it is noteworthy that the apparent non-linearity of the optimal characteristics has
an important significance in design practice and, thus, should be further investigated.



5. CONCLUSIONS

In this paper the Generalized Extremal Optimization algorithm was presented and its
efficacy to tackle complex design optimization problems illustrated in a numerical experiment
with a constrained test function, and in an application to a heat pipe optimization problem.
Inspired by the Bak-Sneppen model of natural evolution, it is a global search stochastic
algorithm devised for handling problems that presents such features as nonconvex design
domains or presence of different kinds of design variables. Having only one free parameter to
adjust gives the GEO, and its variation GEOvar, an “a priori” advantage over other popular
stochastic algorithms, such as the GA or the SA, since the time spent on fine tuning the
algorithm to its best performance would be greatly reduced.

Summarizing, from the results shown on this paper and previously studies (Sousa and
Ramos, 2002; Sousa et al), it can be said that the GEO method is a good candidate to be
incorporated to the designer’s tools suitcase. Further work is under the way on the
implementation of hybrids, parallelization of the algorithm and other practical applications.
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