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X-ray diffraction in thin layers containing small randomly placed defects is described by means 
of the kinematical diffraction theory and optical coherence formalism. The method enables us to 
calculate both the diffracted intensity and its angular distribution, so that it can be used for 
simulating double crystal and triple crystal x-ray diffractometry experiments. The theory has 
been applied to experimental data obtained from diffractometry measurements of an epitaxial 
ZnTe layer with mosaic structure after several steps of chemical thinning. A good agreement of 
the theory with experiments has been achieved. 

I. INTFlODUCTlON 

X-ray diffractometry is a powerful tool for character- 
izing the structure of thin monocrystalline layers. It is fre- 
quently used for determining the lattice parameters of the 
layer and the layer thickness. The crystalline quality of the 
layer has been characterized mainly by measuring the 
width of the rocking curve (FWHM) by means of x-ray 
double crystal diffractometry (DC).iw3 From the FWHM 
the dislocation density can be determined.4 This approach, 
however, has been developed for polycrystalline samples 
and in the case of single crystals it can only be used for a 
rough estimate. 

Triple crystal diffractometry (TC) is frequently used 
for investigating the x-ray diffuse scattering. It has been 
demonstrated’-* that contour maps of diffuse scattering 
measured near the reciprocal lattice point (RELP) are re- 
lated with the defect structure of the sample. 

Structural defects in heteroepitaxial layers are caused 
mainly by threading dislocations and their climb.’ They 
are generated by a coalescence process of seed islands oc- 
curring during a three-dimensional layer growth at the 
substrate surface. The crystallographic structure of relaxed 
heteroepitaxial layers can be modeled by the conception of 
mosaic structure. The mosaic block size corresponds with 
the mean distance between threading dislocations. 

The aim of this paper is to present a theoretical ap- 
proach enabling us to calculate both the DC reflection 
curves and the TC contour maps of thin layers with ran- 
domly distributed small defects. We demonstrate that an- 
alyzing the entire form of a DC reflection curve we can get 
more information about the defects than using only 
FWHM. The general theory is used for calculating the DC 

“‘Permanent address: Instituto de Pesquisas Espaciais, CP 515, 12201- 
S.J.Campos, SP, Brazil. 

reflection curves and TC contour maps of thin epitaxial 
layers with mosaic structure and the results are compared 
with DC and TC measurements of a ZnTe epitaxial layer 
grown on a GaAs substrate. 

II. X-RAY DIFFRACTION IN DISTORTED CRYSTALS 

We restrict ourselves to the kinematical diffraction the- 
ory. This simplification can be performed if the total crys- 
tal thickness 7’ is much smaller than the x-ray extinction 
length. In the case of diffraction on a thin distorted layer 
lying on a thick (or semi-infinite) substrate this approach 
is applicable if we do not consider the diffraction in the 
substrate, i.e., the substrate must not diffract if the layer is 
in the diffraction position. The kinematical diffraction in a 
thin layer is equivalent with the first Born approximation 
in the scattering theory. The diffracted wave in an obser- 
vation point R can be expressed aslo 

D(R) =cr,, f dr p(r) Dinc(r)Gree(R-r), (1) 
V 

where p(r) is the electron density in point r inside the 
crystal, r,, is the classical electron radius (rel=e2/mc? in 
CGSE units), C is the polarization factor of the incident 
wave Dint, and Gf,, is the Green function of a free 
particle” 

Gree = 
exp( -2?rik[ R-r! ) 

[R-r1 ’ 

In the following we assume a plane incident wave 

k is the length of the wave vector in the crystal (k=Kn, n 
is the refractive index of x-rays, K= l//2 is the wave vector 
length in vacuum). We assumed ko= k, i.e., in (1) x-ray 
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refraction is taken into account for the incident wave. The 
wave vector of the primary (vacuum) wave is I(o=k,,--S, 
where 1 K, 1 =K and vector 6 is perpendicular to the crystal 
surface. If we denote g the primary wave vector in the 
Bragg position, then 

holds, where ~~ is the deviation of the primary wave vector 
from its Bragg position. Its length depends on the angular 
deviation w of the crystal from the Bragg position and 
for small deviations it is perpendicular to g. 

Integration in (1) is performed over the whole irradi- 
ated volume V of the layer. 

In the case of an ideal crystal p(r) can be written as a 
Fourier series 

p(r) =pid(r) = C pg exp( -27rig. r> 
g 

(2) 

over the translation vectors g of the reciprocal ideal lattice. 
Considering real crystals, we restrict ourselves .to the 

Takagi approximation. ‘I Its essence consists of the as- 
sumption that the crystal deformation only tiuences the 
phase terms exp ( - 2?rig * r ), and the coefficients pg are un- 
changed. This is valid if the components of the deforma- 
tion tensor are much smaller than unity. Then 

p(r)= C pgexp[--2M2* (r--u(r))] 
g 

(3) 

holds, where u(r) is the displacement of the atom in point 
r. 

Putting (3) or (2) into ( 1) we get an explicit formula 
for D(R). As usual, we could assume the validity of the 
Fraunhofer approximation” (for I r I ( I R I ) and we linear- 
ize the phase term in the Green function Gf,, . Within this 
approach, the entire scattering crystal is treated as a point 
source, therefore, even if the crystal is irradiated by a plane 
monochromatic wave, the diffracted wave is spherical. Ob- 
viously, this approach cannot be used if the diffracting 
crystal has a form of a thin large plate. 

Ignoring the Fraunhofer approximation Eq. ( 1) can be 
simplified within the Takagi approximation. %hen the 
function exp[2dg. u(r)] changes very slowly compared 
with the phase terms exp( -2?rig. r) and exp( -2~ikr). 
The integral in ( 1) can be evaluated by means of the two- 
dimensional stationary phase method. l3 Aft& some algebra 
we get 

D(R)=DincCr,,/K~ exp[WR,kg~lp,~z (R) dr 
&? 

Xexp(~i~~~/~p,)exp[2~ig.u(r)]. (4) 

The integrals on the right-hand side are performed 
over lines Z,(R) going through the observation point R in 
the direction of the diffracted wave with the wave vector 

k,=k,+g. 

The positive z axis is parallel to the inward surface normal 
of the crystal, the x axis lies at the crystal surface in the 
plane of incidence. The phase term <p (R,k,) only depends 

on the observation point and on the deviation O. Its form is 
rather complicated and it is not substantial in the following 
considerations. Q, can be simplified if the observation point 
R lies at the crystal surface. rg are the direction cosines of 
vectors kg with respect to the inward surface normal. The 
coefficient fig comprehends both the deviation w and the 
refraction:” 

k;-k” 
&g’T. 

If the deviation w is small, the following approximative 
formula holds:14 

fig=2w expW>+x~(l-yy,/y0). (5) 

8 is the Bragg angle corresponding to the diffraction vector 
g, y. is the 0th Fourier coefficient of the crystal polariz- 
ability (see below). 

As usual, we only consider the two-wave approxima: 
tion, i.e., in series (2) and (3) we neglect all the terms 
except those with g=O or g=h. We replace the electron 
density p(r) with the crystal polarizabilityL4 

x(r) z=p(r)r,d(d’). 
Then we get the following final formula for the diffracted 
amplitude: 

D(R) = QncrCKXh exp ( -2LrriKox) 

X 
s l/&R) 

dr exp(~iKPhz/yh)exp[2~z~. u(r)]. 

(6) 
Here R= (X,Y,O) is the observation point (we have re- 
stricted ourselves to the Bragg case of diffraction). The 
component of vector ~~ parallel with the crystal surface is 
denoted Key, it is connected with w by 

Kox = - KyOW. (7) 

Formula (6) has been derived in Ref. 15 by a different 
procedure. 

It is worth mentioning that Eq. (6) can also be ob- 
tained as a kinematical limit of an expression for the wave 
diffracted by a distorted crystal within the dynamical dif- 
fraction theory.’ ‘*16 This can be done by calculating the 
limit E-PO, where E is the static Deby+Waller factor. 

Ill. RANDOMLY DEFORMED CRYSTALS 

In most cases the characteristic size of crystal defects is 
much smaller than the size of the irradiated sample volume 
K Then, many defects occur in V and the signal measured 
during an x-ray experiment can be considered averaged 
over all macroscopic nonresolvable defect configurations. 
This averaging we denote by ( ). Then, the deformation 
field u(r) and the diffracted amplitude D(R) can be 
treated as random quantities. Moreover, we assume that 
the measured signal does not change during shifting the 
sample across the primary beam, i.e., the sample and the 
diffracted wave are laterally homogeneous. 
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All the measured quantities can be described using the 
mutual coherence function (MCF) I’(R,R’ ) of the dif- 
fracted wave:17 

r(R,R’)=(o(R)D(R’>*). (f-3) 

From (6) we get 

I’(R,R’) =linJ%CK]Xh] )‘exp[ -2TTiK&(x-x%?‘)] 

where 

x G(r,r’), (9) 

G(r,r’)=(exp[2mh*(u(r)--u(r’))]) (10) 

is the correlation function of the random deformation field 
u(r) and It,, = ] Din= 1 2 is the intensity of the primary beam. 

The MCF can be splitted into two parts: 

r(R,R’)=(D(R))(D(R’))*+((D(R) 

-(D(R>))(D(R’)-(D(R’)))*). (11) 

The first term on the right-hand side expresses the coherent 
part and the second term the partially coherent part of 
MCF. If the sample is irradiated by a plane monochro- 
matic wave, the coherent part of MCF corresponds to the 
plane component of the diffracted wave, the partially co- 
herent part describes the diffusely scattered (i.e., diver- 
gent) component. 

In the case of laterally homogeneous waves there is a 
direct connection between MCF and the angular intensity 
distribution in the diffracted wave: 

F(p)= s 
J 

d(R-R’)r(R-R’)exp[2?riP- (R-R’)]. 

(12) 
The integration in this formula is performed over the sur- 
face S of the crystal, thus the wave ve_ctor p is parallel to 
this surface. The physical meaning of I(p) is obvious. The 
diffracted wav_e is represented by a superposition of plane 
components. I(p) is the intensity of a component, whose 
wave vector is 

v$+ Px 9&J ,Khzz) 9 

where K:=K:+h and the z component Khz must be cho- 
sen that the wave vector length 

(K~x~px)2 +p;+ Kiz equals the vacuum wave vector 

length K= l/L 
As an example, let us consider a special type of defects 

m without any correlation of the deformation field. After a 
straightforward calculation we find that the incoherent 
component of MCF is zero and for the angular intensity 
distribution we get 

F(p) =const ~(p,-K&(Py). 
Thus, the diffracted wave is plane and its wave vector is 
K~+K~. Its deviation Kh depends on w, on the x-ray re- 
fraction, and on the diffraction asymmetry. 

The above theory is applicable for homogeneously 
strained layers as well. The homogeneous deformation of 
the layer only causes a shift of the diffusely scattered in- 
tensity distribution F in the reciprocal plane without any 
distortion of its contours. In the case of bent samples the 
assumption of the crystal homogeneity is not valid and the 
theory cannot be used. However, the influence of the sam- 
ple bending strongly depends on the size of the irradiated 
sample surface. If the irradiated spot is small enough, the 
change of the angle of incidence of x rays due to the bend- 
ing is small compared with the width of the layer reflection 
curve and the sample bending is completely negligible. 

IV. SIMULATION OF DIFFRACTION MEASUREMENTS 

In the previous section we found explicit formulas for 
MCF of the wave diffracted on a crystal with randomly 
distributed small defects. We demonstrated that its Fourier 
transformation represents the angular distribution of the 
diffracted intensity. In this section we connect these results 
with quantities measured in diffractometry experiments. 

Two different experimental arrangements are used: 
Double crystal diffractometry (DC) ‘and triple crystal dif- 
fractometry (TC). In DC the sample is irradiated by a 
nearly parallel and nearly monochromatic x-ray beam and 
the detector registrates the entire diffracted wave regard- 
less of its direction. In TC the detector only measures the 
intensity of such diffracted components that can penetrate 
the narrow angular aperture of the detector. The width of 
this aperture (in the incidence plane) is limited by the 
width of the reflection curve of the third crystal (ana- 
lyzer), perpendicular to that plane it is only limited by the 
size of the entrance detector window and the distance sam- 
ple detector (if no Soller slit is used). As usual, we can 
assume that this height is large and thus the detector is not 
sensitive to the y component of the deviation p. 

A. Double crystal diffractometry 

The intensity measured in the DC arrangement can 
simply be obtained from Rq. (9) putting R=R’: 

I(R) =I’(R,R). 

If the sample is laterally homogeneous, i.e., if 

(13) 

G(r,r’) =G(x-Y,y-y’;z,z’) 

holds, it can be demonstrated that I’(R,R’) = I( R-R’) 
and, therefore the diffracted intensity does not depend on 
R. The only problem to solve is to consider the influence of 
finite angular width and finite spectral width of the pri- 
mary beam. The spectral width can be assumed small so 
that all the quantities depending slowly on /1 (xh, 6, yh, 
etc.) can be considered constant. The spectral width then 
acts as an additional angular divergence of the primary 
beam. 

In the following we denote 5%??“( 4) the reflectivities of 
the crystal collimator (the first crystal in DC) for u and r 
polarizations as a function of the exit angle 4 of the x-ray 
beam. This quantity includes the influence of the spectral 
width of the primary beam as well. q;T is the value of the 
polarization factor C for the 1st and the 2nd crystal (sam- 
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ple) and for o and v polarizations. g?“(w) is the reflec- 
tivity of the beam diffracted by the sample as a function of 
o if the sample is irradiated by a linearly polarized wave in 
o and r polarizations, respectively, i.e., %‘z=l/Iinc. Then 
the signal measured in the DC arrangement is14 

J-“,4W;r(qMW+w) +.%WCW+d 1 
S:A&%U)+~X&l ’ 

(14) 
In the kinematical approximation sZ is proportional to the 
square of the polarization factor, thus, .!%‘;=6%‘: * ( c>2. If 
the diffraction on the first crystal is not too asymmetric, its 
integrated reflectivity J-s1 d+ is proportional to the polar- 
ization factor.14 Then Eq. ( 14) can be simplified 

BDC(O) ~C,, S”,4 =@4tT(4)%($+0) 
.I-“,& g:(4) ’ (15) 

where the effective polarization factor C,, is 

c -l+c;(W 
eff- 

lacy - 
(16) 

Equations (9), ( 13), and ( 15) can be used for simulating 
a DC measurement in the following steps: 

Knowing the explicit form of the correlation function 
G we get the MCF using Eq. (9). 

According to (13) we obtain the diffracted intensity as 
a function of the angular deviation w of the sample. 

Performing the convolution (14) or (15) we get the 
DC rocking curve. 

B. Triple crystal diffractometry 

Since the angular divergence of the diffusely scattered 
wave is usually broader than the reflection curve of a per- 
fect crystal, we neglect the influence of the divergence and 
the spectral width of the primary beam and we assume the 
angular width of the entrance detector aperture in the 
plane of incidence very small. Then, the sample is irradi- 
ated by a plane monochromatic wave and the detector reg- 
istrates the sum of the intensities I(p) over all possible 
values p,,. The measured signal BP, is then a function of 
the angular deviation w of the sample from its Bragg po- 
sition and of the angular position o’ of the entrance detec- 
tor aperture (0 is the angular position of the analyzing 
crystal). The zeros on the o, w’ axes are chosen so that 
W, has a maximum for o=w’ =O. Then 

1 m 
@jpTc( 0,w’) =r 

I &,hx ,pv) - 
me --oo 

(17) 

The angular intensity distribution i(p) depends on w, w’. 
Its dependence on w is contained in flh and ~~~ according to 
Eqs. (5) and (7), the angle o’ is included in pX. Not too 
far from RELP px can be expressed as 

px=Kyh(w’-w). (18) 

The signal %‘ro informs about a distribution of the 
scattering “strength” in the reciprocal plane parallel with 

the plane of incidence near RELP. Thus, it is useful to 
convert the function %rC(ti,cJ) into a distribution of gTc 
in that reciprocal plane. We introduce the coordinates q,, 
q2 in that plane, q1 axis is parallel with the diffraction 
vector h, q2 is perpendicular to it. It follows from geomet- 
rical considerations’8 that 

q,=Kcos(O)w’; q2=K sin(e) (2w--w’). (19) 

These formulas are only valid near RELP. Far from it the 
dependence of q1,2 on w, o’ is not linear.” 

The procedure for calculating the distribution of the 
diffusely scattered intensity src ( q1 ,q2) consists in the fol- 
lowing steps: 

Knowing the correlation function G(r,r’) we calculate 
the MCF according to Eq. (9). 

We perform the Fourier transformation (12) and ob- 
tain the angular distribution I(p) . 

We integrate this distribution along the y axis [Eq. 
(17)]. The resulting quantity is a function of o [according 
to (5) and (7)] andp,, which is a function of o, w’ (18). 

Using ( 19) we transform grC into a function of co- 
ordmates q1,2 in the reciprocal lattice plane. 

V. MOSAIC STRUCTURE MODEL OF EPITAXIAL 
LAYERS 

In this section we derive an explicit formula for G and 
calculate the DC reflection curves %‘o,(w) and the TC 
distributions 9p,(ql,q2) for a layer with mosaic blocks. 

Let us consider an epitaxial layer containing randomly 
oriented and randomly placed mosaic blocks. We assume 
that the crystal lattice in the block is only rotated and not 
strained, so that the deformation tensor has zero diagonal 
components. Further, the misorientation of two adjacent 
blocks is not correlated. 

We restrict ourselves to a statistically homogeneous 
layer, thus all the parameters characterizing the mosaic 
structure (mean block size, mean square misorientation, 
etc.) are constant over the whole layer. This could not be 
true in an actual layer, the influence of an inhomogeneity 
will be discussed in the next section. 

Deriving G(r,r’) for mosaic blocks we follow the pro- 
cedure known from the statistical theory of x-ray diffrac- 
tion.20 If points r, r’ lie in the same block, we get 

G(r,r’)={exp{2rlh* [g~(r-r’)])), 

where g is the random rotation vector of the block. Let us 
assume that the lengths of these vectors are distributed 
normally with zero mean and dispersion A”, their direc- 
tions are distributed isotropically. Then we obtain 

G(r,r’) =exp[ -$(~hAp)~], (20) 

where p is the component of vector r-r’ perpendicular to 
h. 

If points r, r’ lie in different blocks, the shifts u(r) and 
u(r’) are not correlated and 

G(r,r’) =E2, (21) 

where 
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FIG. 1. DC retlection curves of a ZnTe layer (Cu 004 symmetrical Bragg 
case, layer thickness T=3 pm) calculated for various R (part a) and A 
(part b). In part a: A=100 arcsec, R=O.l pm (full), 0.2 pm (dashed), 
and 0.5 pm (dotted)- In part b: R=0.2 pm, A=50 arcsec (full), 100 
arcsec (dashed), and 200 arcsec (dotted). 

E=(exp[2mh*u(r)]) 

is the static Debye-Waller factor (assumed constant over 
the whole volume). 

Denoting P( r,r’ ) the probability of finding both points 
r, r’ in the same block we get for the correlation function 
the following relation: 

G(r,r’) =E’[ l-P(r,r’)] +exp[ --)(n-hAp)‘]P(r,r’). 
(22) 

The explicit form of P depends on the block shape. In 
the simplest case we consider spherical blocks with mean 
radius R. It is shown in the Appendix- that 

P((r--r’l) 

I l--3lr-r’I+( (r-r’l/R13 
for lr--I’] <2R, 

= (4R) 16 
[O for Ir-r’I>2R. 

(23) 
It can be seen that P= 1 if r =r’. 

From the numerical estimate it follows that E< lo-“, 
thus, for reasonable values of R and A the coherent com- 
ponent of the diffracted intensity is negligibly small. 

Thus, within the model of randomly oriented spherical 
blocks two parameters characterize the mosaic structure: 

3 

7 
*= 
V 

l-41 
a- 

0 

-1 

-2 

-2 3 -2 -1 0 1 2 3 
4, b/P& - 

4, (l/w-n) 

PIG. 2. TC contour maps of diffuse x-ray scattering from a 3-pm-thick 
ZnTe layer (Cu Kal, RELP 002) calculated for various R (part a) and 
A (part b). In part a: A=100 arcsec, R=0.2 pm (full) and 0.5 pm 
(dashed). In part b: R=0.2 pm, A=100 arcsec (full) and 200 arcsec 
(dashed). Neighboring contours represent the intensity ratio lo’.‘. 

the mean block radius R and the rms (root-mean-square) 
misorientation A. In the following we show the influence of 
these parameters on 9nc and 9ro. We perform the nu- 
merical calculations for the symmetrical 004 Bragg case 
diffraction on a ZnTe layer, Cu Kcx, radiation. Calculating 
@nc we neglect the divergence of the primary beam. 

Figures 1 (a) and 1 (b) show the calculated DC reflec- 
tion curves for various R [Fig. 1 (a)] and A [l(b)]. It can 
be seen that R influences mainly the tails of the curves; if R 
grows the tails decrease. The diffracted intensity can be 
expressed as an integral of the scattering strength near 
RELP over the Ewald sphere. If R grows the distribution 
of the scattering strength gets closer to RELP, hence the 
intensity diffracted under greater deviations o diminishes. 

From Fig. l(b) it follows that with increasing A the 
width of the reflection curve (FWHM) grows while its 
tails remain nearly unchanged. 

Figures 2(a) and 2(b) present the distributions 
.9?-&q1 ,q2) in the reciprocal lattice plane near RELP. It is 
obvious that the size of the scattering strength “cloud” in 
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FIG. 3. Experimental (circles) and calculated (lines) DC reflection 
curves of a ZnTe layer before thinning (T= 6.2 pm, part a) and after the 
last thinning step (T- I.4 pm, part b). 

the q1 direction (i.e., parallel with the diffraction vector h) 
depends on R, while that in the q, direction depends both 
on R and on A. 

Vi. EXPERIMENTS 

In this section we demonstrate the applicability of the 
above theory for investigating the real structure of epitaxial 
layers. We measured the DC reflection curves of a ZnTe 
heteroepitaxial layer after several steps of its chemical thin- 
ning. The layer has been grown by hot wall epitaxy on a 
GaAs substrate. For the measurements we used a Bartels 
four-crystal Ge monochromator in the 220 setting as the 
first crystal. In addition, after two steps of thinning we 
measured the TC diffuse scattering distribution 
BTc(ql ,q2) near RELP of the layer. For the DC measure- 
ments we used symmetrical 002, 004, and 006 Bragg case 
diffractions (Cu Kcr, radiation), the TC measurement was 
performed in the symmetrical 004 diffraction. 

It has been proved by DC measurements that the layer 
was nearly fully relaxed, i.e., the tetragonal distortion of 
the layer elementary cells was negligible. 

Figures 3 (a) and 3 (b) show the measured (circles) 
and fitted (lines) DC reflection curves before the first thin- 
ning (the layer thickness T=6.2 pm) and after the last 
thinning (T= 1.4 pm). From the fits we obtained the de- 

x 

Q 

I 

O 0 

I I I , ( 

2 
t 4(LLm) 6 

b) 
! 

FIG. 4. Dependences of R (part a) and A (part b) on the removed layer 
thickness t obtained from the fits of the experimental DC curves with the 
theory. The dotted line illustrates the layer-substrate interface (T= 6.2 
pm); squares represent the values from the fit of the TC contour map (see 
Fig. 5). The relative errors of R and A are - 10%. 

pendences of the parameters R and A on the thickness t of 
the removed layer. This dependence is plotted in Figs. 4(a) 
and 4(b). 

Figure 5 shows the 9 ro contour maps measured after 
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FIG. 5. TC contour map measured near RELP 004 after the second 
thinning step (full) and its simulation (dashed). The neighboring con- 
tours represent the intensity ratio @. 
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FIG. 6. Mean distance a of adjacent dislocations estimated from FWHMs 
of measured DC curves as a function of removed layer thickness t. The 
relative error of a is - 15%. 

the second thinning step ( T=3.5 pm> and calculated us- 
ing the defect parameters following from the numerical fit 
with the theory. The values of R and A following from the 
fit are plotted in Figs. 4(a) and 4(b) again. 

VII. DISCUSSION 

The experimental DC curves compare well with the 
theory. The distribution of the diffuse scattering strength 
measured by TC exhibits a slight asymmetry, probably due 
to a residual strain gradient near the substrate. The resid- 
ual strain gradient was not considered in our model and it 
affected unfavorably the accuracy of determining R and A 
by the fitting procedure. Nevertheless, the layer was nearly 
fully relaxed and therefore the residual stress was not big 
enough to bend the whole sample. This statement is sup- 
ported by the form of the TC contour maps; the substrate 
peak in the measured map was circularly symmetrical and 
its width was comparable with the divergence of the pri- 
mary beam N 12 arcsec. 

The fact that R and A depend on t disagrees with the 
assumption about the layer homogeneity performed in Sec. 
V. R and A found from the 6ts represent some effective 
values averaged over the penetration depth of the primary 
x-ray beam. This depth can be estimated as l/~,~, where 
,LQ is the effective linear absorption coefficient. For the Cu 
002 diiIraction the penetration depth is about 2 pm, while 
for Cu 006 it is nearly 7 pm. This could be the reason for 
the differences between the R and A values found from 
different diffractions. The values found for 002 diffraction 
represent the best estimates for the true dependences R(t), 
A(t). 

The above theory can be applied if the layer is thin 
enough and if the diffraction in the substrate can com- 
pletely be neglected. The latter condition means that the 
scattering strength “clouds” near RELPs of the layer and 
the substrate shoud not overlap. This is fulfilled only for 
greater lattice misfits of the layer and substrate. 

It is well known that heteroeptiaxial layers contain 
defects of various types (misfit dislocations, threading dis- 
locations, various precipitates, etc.). We described the de- 

SPHERICAL BLO 

FIG. 7. Sketch for deriving P(s). 

feet structure using the mosaic defect model; thus, the con- 
nection of the mosaic blocks with the actual defect 
structure is only indiiect. The values of R and A found by 
the fit represent rather some effective values than true de- 
fect parameters. The above description of the diffraction 
process using MCF is general and it can be used also for 
other defect types, provided that the correlation function 
G(r,r’) of the deformation field is known. 

The connection of our defect model with the concep- 
tion of randomly distributed dislocations can easily be 
demonstrated. From FWHMs of DC curves the disloca- 
tion density D can be estimated.” Figure 6 represents the 
mean distance a of adjacent dislocations (calculated by 
a= l/ 0) as a function oft. Comparing with Fig. 4(a) we 
find that a agrees approximately with mean block diameter 
2R. Therefore, the mosaic block used in our model corre- 
sponds with the undeformed part of the crystal lattice be- 
tween neighboring dislocations. 

From Figs. 4(a) and 4(b) and 6 it is obvious that the 
structural quality of the layer gets better towards the free 
surface. This agrees with our previous results.‘>2 

In our model we considered neither the surface relax- 
ation of the stresses introduced by the defects nor the an- 
isotropy of the defect shapes. Further improvement of the 
defect model could include possible strain in mosaic blocks 
and various block shapes. 

VIII. CONCLUSION 

We developed the theoretical description of the x-ray 
diffraction in thin layers containing small randomly dis- 
tributed defects. Our approach is based on the kinematical 
approximation.of the diffraction theory and on the optical 
coherence formalism. The theory enables us to calculate 
both the DC reflection curves and the TC contour maps of 
diffuse x-ray scattering. 

The theory has been used for investigating the mosaic 
structure of epitaxial layers. We showed that the statistical 
parameters of the defects (block size and block misorien- 
tation) can be determined from DC reflection curves. We 
demonstrated that the theory explains the form of experi- 
mental TC contour maps and a qualitative agreement with 
the experimental maps was achieved. The conception of 
mosaic blocks is only a rough model of actual defect struc- 

1742 J. Appl. Phys., Vol. 74, No. 3, 1 August 1993 Holg et al. 1742 

Downloaded 06 Jul 2004 to 150.163.34.25. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



ture in a heteroepitaxial layer. For a more detailed study of 
the defects an application of several independent methods 
is inevitable. 

block. Let us assume blocks of spherical form with radius 
R.ThenPonlydependsons=[r-r’l. 

APPENDIX 

In the following we derive IQ. (23) for the probability 
P of finding two points r and r’ in the same mosaic 

Let us put one point (say r) into the distance x0 from 
the block center (x0 CR) and the other (r’) into the dis- 
tance s from the first one. The probability PC(xo,s) of find- 
ing point r’ in the same block is then proportional to the 
area of that part of the spherical surface with centre in r 
and radius s, which lies inside the block (see Fig. 7). 

After a simple but lengthy calculation we obtain 

I 

1 for xo<R--s and s<R 

Pc(XoJ) = 
(R2-~-+2sx0-x$/(4x03) for /R-s1 <xo<R and s<2R 

0 for xo<s-R and R<s<2R 
C-41) 

0 for s> 2R. 

P&co,s) is a conditional probability, therefore for proba- 
bility P(s) we get 

p(s) _ soR~xop,(xo,s)p’(xo) 
- s$wYxo) ’ (A21 

where P’(x,) is the probability of putting the point r into 
the distance x0 from the block center. It is proportional to 
the spherical surface area 47rxi. 

Putting from (Al) into (A2) we obtain the final for- 
mula (23) for the probability P(s). 
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