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Resistive transition in szr-junction superconductors
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The resistivity behavior of inhomogeneous superconductors with ranelgumctions, as in highF, mate-
rials with d-wave symmetry, is studied by numerical simulation of a three-dimensionabpin-glass model.
Above a concentration threshold of antiferromagnetic couplings, a resistive transition is found in the chiral-
glass phase at finite temperatures and the critical exponents are determined from dynamic scaling analysis. The
power-law exponent for the nonlinear contribution found in recent resistivity measurements is determined by
the dynamic critical exponent of this transition.
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Inhomogeneous superconductors containing a randorimhomogeneous superconductor is a chiral-glass but with no
distribution of 7 junctions, as in highF; superconducting phase coherence and, therefore, the resistivity should be non-
materials withd-wave symmetry, can display unusual frus- zero. This implies a chiral glass transition at a nonzero criti-
tration effects even in zero external magnetic fleld. =  cal temperature but no resistive transition, except perhaps at
junction leads to a phase shift @fbetween superconducting zero temperature. Thus, strictly speaking, there is no true
regions, and to half flux quantum vortices on closed loopssuperconducting phase at low temperatures in this scenario.
with an odd number of these junctioh#nteresting ordering However, while different works agree on the existence of the
effects are expected due to vortex interactions. Some of thegproposed chiral-glass transition, the situation regarding the
have already been directly imaged on specially preparedesistive behavior is unsettled. Results for the ground
high-T, Josephson contaétand should also be relevant for staté!?of the XY-spin glass model indicate that the lower
7 junctions in lowT, superconductorSMuch attention has critical dimension for phase ordering is between 2 and 3 and
been devoted to the magnetic properties of inhomogeneouberefore a phase-coherence transition is only possible at
superconductors arising from the orbital currents of theseero temperature in two dimensidAsut should occur at
vortices*>®and in particular to its relevance for the explana-finite temperatures in three dimensions. The critical tempera-
tion of paramagnetic Meissner effdct® Nevertheless, there ture for three dimensions, however, cannot be estimated from
are also important consequences for the resistivity behavidhese calculations. Moreover, dynamical simulations suggest
of theses systems which have not been investigated satisfag-resistive transition at finite temperattfr& and very recent
torily. MC calculations for a model with Gaussian couplings, ex-

In the absence ofr junctions, the phases of neighboring pected to be in the same universality class, strongly support
superconducting regions tend to be locked with zero phasthe occurrence of this transitidA.The dynamical simula-
shift, and a phase-coherence transition is expected for deions were based on different representations of the same
creasing temperature into a superconducting state with vaimodel and different dynamics. While the static exponents
ishing linear resistivity. The critical behavior of this resistive agree, as expected from the universality of critical behavior,
transition is reasonable well understood. On the other hanghe dynamic exponent~4.6 obtained from the resistively
for sufficiently large concentration ofr junctions, which  shunted junctiofRSJ model of the dynamics in the phase
may occur for example in granular samples, frustration, anglepresentatiotf is significantly different from that obtained
disorder effects leads to a vortex glassy phase and the resigom MC dynamics,z~3.1, in the vortex representatioh,
tive behavior is much less understood. The simplest modedyggesting a strong dependencezadn the details of the
of the system is to consider only contributions from the Jo-gynamics.
sephson coupling energy of nearest-neighbor grai, On the experimental side, there have been some attempts
= —Jocos@—6—t;), whered; is the phase of the local su- to identify the chiral-glass phase from nonlinear resistivity
perconducting order paramet#>0 andt;; =0 or  corre-  measurements in ceramic YR2u,0Og bulk sample¥’ at zero
spond to the phase shifts of conventional andunctions.  magnetic field, near the onset of the paramagnetic Meissner
This is equivalent to the interaction of two-component pseueffect. The nonlinear contributiop, to the resistivity was
dospins§= [cos@),sin(9)], coupled by ferro or antiferromag- found to have a peak at the transition with power-law behav-
netic interactions, respectively, which leads to anior p,cJ™¢. This behavior has already been reproduced in
XY-spin{chiral-) glass model for the granular systérithe  dynamical simulation&® The results of the experiment have
chiral variable can be defined as the direction of the locabeen interpreted as a chiral-glass transition attributed to the
circulating currentgvorticeg in closed loops of junctions. presence ofr junctions, with a nonzero linear resistivity
Based on earlier and recent Monte CarlGMC) below the critical temperature, but the value @fand its
simulationé~°for this model in three dimensions, it has beenpossible relation with the critical exponents of the underlying
suggested that the equilibrium low-temperature state for th&ransition was not found.
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In this work, we study the resistivity behavior of inhomo-
geneousr-junctions superconductors using &iY-spin glass 10° E
model with varying concentratiox of antiferromagnetic i
bonds. An improved numerical method is used, combining
MC and Langevin simulation with periodic boundary condi-
tions. The results of a scaling analysis of extensive simula-
tions for x=0.5 clearly show the existence of a resistive i
transition at finite temperature. A threshotg~0.3 for the A

chiral-glass phase is estimated from the behavior of the zero 10 _ _
temperature critical current. The power-law exponenfor ]
the nonlinear contribution found in  resistivity f 1
measurement§can be related to dynamic critical exponent 10° 3 N —%—T=0.25 7
of this transition. The observed value ®fis within the range e . e —— . ———
expected from numerical estimateszf 1072 10 10°
We consider inhomogeneous superconductors with J
junctions modeled by a three-dimensioXaf-spin glass de- (b)
scribed by the Hamiltonian —
1°F T .0.39 ¢ 1
H=—Jo<i2j> cog 6, — 0;—t;;), (1) - 224.4 <><><><> 1
w10tk 1
where the quenched phase sttiftis equal tom or 0 with - v=12 W‘Lﬁ* A T=05
probabilitiesx and 1-x, respectively. The symmetric¢-J, - 10 r W v T=0.45 1
XY spin glas$** 3 1Scorresponds tx=0.5 while the un- E A A o T=04 J
frustratedXY model correspond ta=0. We use the time- "'|_J p 4 xx + T=0.35 L
dependent Guinzburg-Landau model for the dynamics giver — 0r X T=03 &
by the Langevin equations r 1
10-3 MR ETIT BRI | MR TTTT SR | sl ]
1 do, . 10" 10° 10’ 10° 10° 10"
R, dt J@ Sin(0;— 0;—t;) + 7, i) J§2/T

where m represents upcorrelated thermal noise with G, 1. (a) Nonlinear resistivityE/J for x=0.5 (equal distribu-
(mi(t) mi(t"))=2kgTo(t—t")/R, to ensure thermal equilib- tions of 0 and junctions, and different temperaturds for system

rium. This can also b_e regarded as an onsite dissipatiosize =12, (b) scaling plot of the data near the transition and for
model for the dynamics of the granular superconductosmall currents, withéo| T/T,—1|".

whereR, is the resistance of each point grain to the ground

and J, is the Josephson coupling. The RSJ model studied The nonlinear resistivityy=E/J for x=0.5 is shown in
previously® allows only dissipation through the junction Fig. 1(a) for different temperature¥ for the largest system
shunt resistance. We use units whémie=1, R,=1, J,  sizeL=12. The behavior is consistent with a resistive tran-
=1. To obtain the current-voltage characteristics more accusition at an apparent critical temperature in the rafge
rately in the glassy phase, we introduce an improved method-0.3-0.45. At higher T, the linear resistivity p,
First, MC simulations are performed using Ed) to obtain  =lim _ E/J is finite while at lowerT, it extrapolates to

the equilibrium statézero current bigswhich is then used as . . .
o : : . .~ zero. The phase transition can be confirmed by a scaling
initial state to integrate numerically the Langevin equatlonsanal sis of the nonlinear resistivity which assumes the exis-
(2) for the driven system. Periodifluctuating twisi bound- y y

ary conditions are used both for the MC simulatigr§ and tence of a continuous equilibrium wransition & 0.~ Near
; . . . . . i the transition, measurable quantities scale with the diverging
driven Langevin dynamié$ simulations. Previous simula-

H _ -V H H Z
tions used current injection with free boundary conditf8ns correlation length¢e:|T—T| . and relaxation tme;ocf -
\Q/herev andz are the correlation length and dynamical criti-

but periodic boundary conditions are more adequate sinc . . L
they avoid possible edge contributions. For systems of Iinea?ﬁéfégzgg/n:ﬁ’erscsglﬁ%'\;gg% The nonlinear resistivity should

size L, the voltageV (electric fieldE=V/L) was computed
as a function of the driving current (current densityJ -1/ 17— 2

=1/L?) for different temperatures and systems sizes ranging TEE19=0-(3¢7T) @
fromL=4 toL=12. Calculations were performed in a cubic in d=3 dimensions wherg(x) is a scaling function. The-
system, using 10time steps and ten different realizations of and— signs correspond t6>T, andT<T,, respectively. A

the A;; distribution, in the lowest current range. The mostscaling plot according to this equation can then be used to
extensive simulations were done far=0.5 while for x verify the scaling arguments and the assumption of an under-
< 0.5 the main purpose was to obtain the qualitative phasting equilibrium transition atJ=0. The optimal data col-
diagram andr=0 critical currents. lapse provides an estimate Bf and critical exponents. Such

012503-2



BRIEF REPORTS PHYSICAL REVIEW B59, 012503 (2004

(a) (b)
10° 10°
2
ol T=0.39 J&/T=1 A
® 2t § “‘/__.\10“ soa7 o 1 FIG. 2. (a) Finite-size scaling plot of the non-
5‘ O L=4 2 A o L=4 linear resistivity atT.=0.39, (b) finite-size scal-
|-||_J 10’ éﬂ:gﬁ O L=6 i E e O L6 ing plot nearT . using current densities such that
~ L0 A L8 o'k 0 A L8| JE3T=1, a constant value.
gOo v L=10 a
10°F 3
10° 10’ 10° 10° 10’
1/
JLAT L (T/T A1)

scaling plot, which neglects finite-size effects, is shown inoverlap distribution functiod=° On the other hand, a phase-
Fig. 4b), obtained by adjusting the unknown parameterscoherence transition dt>0 is consistent with calculations
giving the estimatesT,=0.392), z=4.4(3), and v  of the spin stiffness exponent in the ground state showing
=1.2(2). We nowshow that these estimates, using the larg-that the lower-critical dimension for spin order in the
est system size, are reliable by verifying that they give theXY-spin-glass modet is below 3, which implies that a
expected finite-size behavior using smaller system size@hase-coherence transition &t>0 is possible. More re-
Finite-size effects are particularly important sufficiently C€ntly, improved calculations in the vortex representation,
close toT. when the correlation lengtlf approaches the &ISO cIeaery shows a well-defined positive stiffness
system sizé.. In particular, aff, , the correlation length will exponent? In addition, calculations of the linear resistivity

be cut off by the system size in any finite system and the’. (zero current bigsfrom MC dynamics simulations in the

: . . . i WS an ilibrium resistive tran-
nonlinear resistivity should then satisfy a scaling form as in/Ortex representatiotf, shows an equilibrium resistive tra

. T . sition. The estimate of the static exponenagrees with the
Eq. (3) with £&=L. In fact, as shown in Fig.(3), the nonlin- ; . S
egr (re)sistivitfl calculated at the estimatE gl %_)39 for differ- present estimate from the nonlinear resistivity but the dy-

. . . . . . namic exponenf z=3.1 is significantly lower. Interestingly
ent system sizes satisfy this scaling form wath 4.6 which — g5,01 “our calculations of show the same result for the

agrees W'th'.n the errors. Away frof., _the sqallng funct_|on onsite and RSJ dynamics. Additional calculations using MC
in Eq. (3) will also depend on the dimensionless r‘zﬁ‘b‘l dynamics in the phase representation give the same résult.
L/€ asg(JE%/T,L/€). To simplify the analysis, we consider | spite of that, it is possible that the differenis a result of

resistivity ~data at current densities such thatthe particular dynamics in the vortex representation. In fact,
J&%IT=constant. Then, the scaling form depends only on aortex variables are collective excitations in the phase repre-
single variable and the resistivity should satisfy the finite-sentation and thus lead to long-range correlations for the

size scaling form phases, suggesting that these representations may belong to
different dynamic universality classes.
TELZ YI=g[LY(T/T,—1)]. (4) The dependence @i, on the concentration af junctions

o ] o X is shown in the phase diagram of FigaB The values of
As shown in Fig. 2b), the nonlinear resistivity calculated for T_ for x<0.5 were obtained as rough estimates from the
different temperatures and system sizes such &&IT  nonlinear resistive behavior, and is found to be nonzero in
=1, with the estimated .= 0.39 andv=1.2, indeed satisfy the whole range. We have also estimated the critical tempera-
this scaling form withz=4.65 which again agrees within the ture from the peak of the phase susceptibiliy= ((m?)
errors. Using a different constadg?/T=2 gives similar re- —(mY?)/L3, wherem=|3;S| and S=[cos(),sin(9)], aver-
sults. aged over the disorder, which measures the onset of long-

The values off ¢, z, andv obtained by the above scaling range phase coherence outside the glassy phase. As shown in

analysis using the onsite dynamics of E2). agree well with  Fig. 3(a), this transition temperature decreases for increasing
the previous estimate using the RSJ m&dfdr the dynam-  x and extrapolates to zero at a threshold valye 0.3. We
ics [T=0.413), z=4.6(4), andv=1.2(4)], clearly show- then expect that the range>x, should correspond to the
ing the existence of a phase-coherence transitidre@ and  vortex (chiral-) glass phase. We note that ferx, the sus-
also showing that the dynamic exponeris essentially the ceptibility peak agrees witf; showing that indeed the re-
same. Our estimate of . from the resistivity scaling is in sistive transition corresponds to the phase-coherence transi-
good agreement with recent estimate of the critical temperaion. Additional evidence for the vortex glass phase is also
ture for the chiral-glass transition from MC simulatichsy  provided by the change of the critical current with applied
the rangeTl.,=0.38-0.41. The agreement is quite intriguing external field. Figure @) compares the behavior of the
since it supports the suggestiorthat chirality and phase =0 critical currentd, with and without a magnetic fiel&
variables may order simultaneously. Recent MC simulationgpplied transversely to the current direction. The external
of the XY-spin-glass model with Gaussian couplings, ex-field acts as a uniform frustratiof=Ba®/ ¢, in the
pected to be in the same universality class, strongly suppoi Y-spin-glass model of Eq1), wherea is the lattice spac-
such single transition scenaridNevertheless, this transition ing of the Josephson network agg the flux quantum, and
is in sharp contrast with MC simulations of the phase-introduces a vortex lattice with dimensionless spacing av/a
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(a) (b)
25 - 1ol T FIG. 3. (a) Phase diagram showirg (super-
’ conducting, SCG (superconducting chiral glass
20y 1 1.0p andN (norma) phases as a function of tempera-
osl ture and concentratioxof 7 junctions.(b) Criti-
s 1 J.° —o—t-0 | densiti function ok without
T N R NEVA cal currents ensi iek as afunc ion ok withou
Sol oer (f=0) and with f=1/4) a uniform external
04l magnetic field. In(a) triangle symbols correspond
05 | S N sl R—a 5 o | te .critical temperatures estimated from the resis-
\ sca R tivity beh_a_1V|or and squares from the phase-
0.0 bt 0g L susceptibility peak.
X X

«1/f1/2. There is a large change &f for x<x,, where some

translational order at length scales large tlgrnis still pos-
sible, but there is essentially no changexorx,, indicating

the resistive transition as found here is consistent with
the observed peak in the nonlinear resistivity at the apparent
transition temperature. If a resistive transition is assumed

that in this range there is only short-range order. The chang® occur at this temperature then the power-law behavior

of behavior gives a very rough estimatef Xg-

of p, follows directly from the current-voltage scaling

Finally, we compare the critical properties of the resistivenear the transition temperature. Defining the nonlinear
transition with experiments. Nonlinear resistivity measure-contribution ag),= % 2J%(E/J), the scaling behavior of Eq.
ments in ceramic YB#Cu,Og bulk sample¥’ near the onset (3) oheyed by our numerical data, implies thatcd ¢,
of the paramagnetic Meissner effect have been interpreted 3s,an ¢— near the critical temperature, with the exponent

a chiral-glass transition attributed to the presencer géinc-
tions, with a nonzero linear resistivity beloW.. In the ex-

relation «=(5—2)/2. Using the dynamical exponent of the
resistivity scalind?* z=4.4(4) from the present work and

periments, the measured resistiviiywas separated into & ;_3 7 from the vortex-representatidhgives the estimates

linear and nonlinear contribution through a low order expan

sion in the current densityy=p,+ p,J%+ . ... Thelowest

order nonlinear contributiop, was found to have a peak at
the transition with power-law behavigr,«J™ ¢ and expo-
nenta~1.1(6), while the linear contributiorp, appears to

‘@=0.3(3), and «=0.95. These are comparable to the

observable value in the experiments within the errors.

We should note that the model considered here neglects
screening of vortices due to inductance effects. For strong
screening, the finite-temperature transition is destrdyéd.

remain finite below this temperature. However, since thejowever, it is possible that for very weak screening a resis-
apparent linear contribution is very small and finite currentjye transition is still possible.

bias was used, the limited accuracy of the data can not
completely rule out a strict zero resistivity phase below this This work was supported by FAPESRant No. 03/
temperature. It is of interest to verify to which extent 00541-0.
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