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Resistive transition in p-junction superconductors
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The resistivity behavior of inhomogeneous superconductors with randomp junctions, as in high-Tc mate-
rials with d-wave symmetry, is studied by numerical simulation of a three-dimensionalXY spin-glass model.
Above a concentration threshold of antiferromagnetic couplings, a resistive transition is found in the chiral-
glass phase at finite temperatures and the critical exponents are determined from dynamic scaling analysis. The
power-law exponent for the nonlinear contribution found in recent resistivity measurements is determined by
the dynamic critical exponent of this transition.
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Inhomogeneous superconductors containing a rand
distribution of p junctions, as in high-Tc superconducting
materials withd-wave symmetry, can display unusual fru
tration effects even in zero external magnetic field.1 A p
junction leads to a phase shift ofp between superconductin
regions, and to half flux quantum vortices on closed loo
with an odd number of these junctions.2 Interesting ordering
effects are expected due to vortex interactions. Some of t
have already been directly imaged on specially prepa
high-Tc Josephson contacts3 and should also be relevant fo
p junctions in low-Tc superconductors.4 Much attention has
been devoted to the magnetic properties of inhomogene
superconductors arising from the orbital currents of th
vortices1,5,6 and in particular to its relevance for the explan
tion of paramagnetic Meissner effect.7–10 Nevertheless, there
are also important consequences for the resistivity beha
of theses systems which have not been investigated sati
torily.

In the absence ofp junctions, the phases of neighborin
superconducting regions tend to be locked with zero ph
shift, and a phase-coherence transition is expected for
creasing temperature into a superconducting state with
ishing linear resistivity. The critical behavior of this resistiv
transition is reasonable well understood. On the other h
for sufficiently large concentration ofp junctions, which
may occur for example in granular samples, frustration,
disorder effects leads to a vortex glassy phase and the r
tive behavior is much less understood. The simplest mo
of the system is to consider only contributions from the
sephson coupling energy of nearest-neighbor grains,1 Hi j
52Jocos(ui2uj2tij), whereu i is the phase of the local su
perconducting order parameterJo.0 andt i j 50 or p corre-
spond to the phase shifts of conventional andp junctions.
This is equivalent to the interaction of two-component ps
dospinsSW 5@cos(u),sin(u)#, coupled by ferro or antiferromag
netic interactions, respectively, which leads to
XY-spin-~chiral-! glass model for the granular system.7 The
chiral variable can be defined as the direction of the lo
circulating currents~vortices! in closed loops of junctions
Based on earlier and recent Monte Carlo~MC!
simulations7–9 for this model in three dimensions, it has be
suggested that the equilibrium low-temperature state for
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inhomogeneous superconductor is a chiral-glass but with
phase coherence and, therefore, the resistivity should be
zero. This implies a chiral glass transition at a nonzero cr
cal temperature but no resistive transition, except perhap
zero temperature. Thus, strictly speaking, there is no t
superconducting phase at low temperatures in this scen
However, while different works agree on the existence of
proposed chiral-glass transition, the situation regarding
resistive behavior is unsettled. Results for the grou
state11,12 of the XY-spin glass model indicate that the low
critical dimension for phase ordering is between 2 and 3
therefore a phase-coherence transition is only possible
zero temperature in two dimensions13 but should occur at
finite temperatures in three dimensions. The critical tempe
ture for three dimensions, however, cannot be estimated f
these calculations. Moreover, dynamical simulations sugg
a resistive transition at finite temperature14,15and very recent
MC calculations for a model with Gaussian couplings, e
pected to be in the same universality class, strongly sup
the occurrence of this transition.16 The dynamical simula-
tions were based on different representations of the s
model and different dynamics. While the static expone
agree, as expected from the universality of critical behav
the dynamic exponentz;4.6 obtained from the resistively
shunted junction~RSJ! model of the dynamics in the phas
representation15 is significantly different from that obtained
from MC dynamics,z;3.1, in the vortex representation,14

suggesting a strong dependence ofz on the details of the
dynamics.

On the experimental side, there have been some attem
to identify the chiral-glass phase from nonlinear resistiv
measurements in ceramic YBa2Cu4O8 bulk samples17 at zero
magnetic field, near the onset of the paramagnetic Meiss
effect. The nonlinear contributionr2 to the resistivity was
found to have a peak at the transition with power-law beh
ior r2}J2a. This behavior has already been reproduced
dynamical simulations.18 The results of the experiment hav
been interpreted as a chiral-glass transition attributed to
presence ofp junctions, with a nonzero linear resistivit
below the critical temperature, but the value ofa and its
possible relation with the critical exponents of the underlyi
transition was not found.
©2004 The American Physical Society03-1
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BRIEF REPORTS PHYSICAL REVIEW B69, 012503 ~2004!
In this work, we study the resistivity behavior of inhom
geneousp-junctions superconductors using anXY-spin glass
model with varying concentrationx of antiferromagnetic
bonds. An improved numerical method is used, combin
MC and Langevin simulation with periodic boundary cond
tions. The results of a scaling analysis of extensive simu
tions for x50.5 clearly show the existence of a resisti
transition at finite temperature. A thresholdxg;0.3 for the
chiral-glass phase is estimated from the behavior of the z
temperature critical current. The power-law exponenta for
the nonlinear contribution found in resistivit
measurements17 can be related to dynamic critical exponenz
of this transition. The observed value ofa is within the range
expected from numerical estimates ofz.

We consider inhomogeneous superconductors withp
junctions modeled by a three-dimensionalXY-spin glass de-
scribed by the Hamiltonian

H52Jo(̂
i j &

cos~u i2u j2t i j !, ~1!

where the quenched phase shiftt i j is equal top or 0 with
probabilitiesx and 12x, respectively. The symmetric6Jo
XY spin glass7,11,13–15corresponds tox50.5 while the un-
frustratedXY model correspond tox50. We use the time-
dependent Guinzburg-Landau model for the dynamics gi
by the Langevin equations

1

Ro

du i

dt
52Jo(

j
sin~u i2u j2t i j !1h i , ~2!

where h i represents uncorrelated thermal noise w
^h i(t)h i(t8)&52kBTd(t2t8)/Ro to ensure thermal equilib
rium. This can also be regarded as an onsite dissipa
model for the dynamics of the granular superconduc
whereRo is the resistance of each point grain to the grou
and Jo is the Josephson coupling. The RSJ model stud
previously15 allows only dissipation through the junctio
shunt resistance. We use units where\/2e51, Ro51, Jo
51. To obtain the current-voltage characteristics more ac
rately in the glassy phase, we introduce an improved meth
First, MC simulations are performed using Eq.~1! to obtain
the equilibrium state~zero current bias! which is then used as
initial state to integrate numerically the Langevin equatio
~2! for the driven system. Periodic~fluctuating twist! bound-
ary conditions are used both for the MC simulations19,20 and
driven Langevin dynamics21 simulations. Previous simula
tions used current injection with free boundary condition15

but periodic boundary conditions are more adequate s
they avoid possible edge contributions. For systems of lin
sizeL, the voltageV ~electric fieldE5V/L) was computed
as a function of the driving currentI ~current densityJ
5I /L2) for different temperatures and systems sizes rang
from L54 to L512. Calculations were performed in a cub
system, using 107 time steps and ten different realizations
the Ai j distribution, in the lowest current range. The mo
extensive simulations were done forx50.5 while for x
,0.5 the main purpose was to obtain the qualitative ph
diagram andT50 critical currents.
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The nonlinear resistivityr5E/J for x50.5 is shown in
Fig. 1~a! for different temperaturesT for the largest system
sizeL512. The behavior is consistent with a resistive tra
sition at an apparent critical temperature in the rangeTc
;0.3–0.45. At higher T, the linear resistivity rL
5 lim

J→0
E/J is finite while at lowerT, it extrapolates to

zero. The phase transition can be confirmed by a sca
analysis of the nonlinear resistivity which assumes the e
tence of a continuous equilibrium transition atT.0.22 Near
the transition, measurable quantities scale with the diverg
correlation lengthj}uT2Tcu2n and relaxation timet}jz,
wheren andz are the correlation length and dynamical cri
cal exponents, respectively. The nonlinear resistivity sho
then satisfy the scaling form22

TEjz21/J5g6~Jj2/T! ~3!

in d53 dimensions whereg(x) is a scaling function. The1
and2 signs correspond toT.Tc andT,Tc , respectively. A
scaling plot according to this equation can then be used
verify the scaling arguments and the assumption of an un
lying equilibrium transition atJ50. The optimal data col-
lapse provides an estimate ofTc and critical exponents. Suc

FIG. 1. ~a! Nonlinear resistivityE/J for x50.5 ~equal distribu-
tions of 0 andp junctions!, and different temperaturesT, for system
sizeL512, ~b! scaling plot of the data near the transition and f
small currents, withj}uT/Tc21u2n.
3-2
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FIG. 2. ~a! Finite-size scaling plot of the non
linear resistivity atTc50.39, ~b! finite-size scal-
ing plot nearTc using current densities such tha
Jj2/T51, a constant value.
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scaling plot, which neglects finite-size effects, is shown
Fig. 1~b!, obtained by adjusting the unknown paramete
giving the estimatesTc50.39(2), z54.4(3), and n
51.2(2). We nowshow that these estimates, using the la
est system size, are reliable by verifying that they give
expected finite-size behavior using smaller system si
Finite-size effects are particularly important sufficien
close to Tc when the correlation lengthj approaches the
system sizeL. In particular, atTc , the correlation length will
be cut off by the system size in any finite system and
nonlinear resistivity should then satisfy a scaling form as
Eq. ~3! with j5L. In fact, as shown in Fig. 2~a!, the nonlin-
ear resistivity calculated at the estimatedTc50.39 for differ-
ent system sizes satisfy this scaling form withz54.6 which
agrees within the errors. Away fromTc , the scaling function
in Eq. ~3! will also depend on the dimensionless ratio22,14

L/j asg(Jj2/T,L/j). To simplify the analysis, we conside
resistivity data at current densities such th
Jj2/T5constant. Then, the scaling form depends only o
single variable and the resistivity should satisfy the fini
size scaling form

TELz21/J5g̃@L1/n~T/Tc21!#. ~4!

As shown in Fig. 2~b!, the nonlinear resistivity calculated fo
different temperatures and system sizes such thatJj2/T
51, with the estimatedTc50.39 andn51.2, indeed satisfy
this scaling form withz54.65 which again agrees within th
errors. Using a different constantJj2/T52 gives similar re-
sults.

The values ofTc , z, andn obtained by the above scalin
analysis using the onsite dynamics of Eq.~2! agree well with
the previous estimate using the RSJ model15 for the dynam-
ics @Tc50.41(3), z54.6(4), andn51.2(4)], clearly show-
ing the existence of a phase-coherence transition atT.0 and
also showing that the dynamic exponentz is essentially the
same. Our estimate ofTc from the resistivity scaling is in
good agreement with recent estimate of the critical temp
ture for the chiral-glass transition from MC simulations,9 in
the rangeTch50.38–0.41. The agreement is quite intriguin
since it supports the suggestion15 that chirality and phase
variables may order simultaneously. Recent MC simulati
of the XY-spin-glass model with Gaussian couplings, e
pected to be in the same universality class, strongly sup
such single transition scenario.16 Nevertheless, this transitio
is in sharp contrast with MC simulations of the phas
01250
,

-
e
s.

e
n

t
a
-

a-

s
-
rt

-

overlap distribution function.7–9 On the other hand, a phase
coherence transition atT.0 is consistent with calculation
of the spin stiffness exponent in the ground state show
that the lower-critical dimension for spin order in th
XY-spin-glass model11 is below 3, which implies that a
phase-coherence transition atT.0 is possible. More re-
cently, improved calculations in the vortex representati
also clearly shows a well-defined positive stiffne
exponent.12 In addition, calculations of the linear resistivit
rL ~zero current bias! from MC dynamics simulations in the
vortex representation,14 shows an equilibrium resistive tran
sition. The estimate of the static exponentn agrees with the
present estimate from the nonlinear resistivity but the
namic exponent14 z53.1 is significantly lower. Interestingly
enough, our calculations ofz show the same result for th
onsite and RSJ dynamics. Additional calculations using M
dynamics in the phase representation give the same res20

In spite of that, it is possible that the differentz is a result of
the particular dynamics in the vortex representation. In fa
vortex variables are collective excitations in the phase rep
sentation and thus lead to long-range correlations for
phases, suggesting that these representations may belo
different dynamic universality classes.

The dependence ofTc on the concentration ofp junctions
x is shown in the phase diagram of Fig. 3~a!. The values of
Tc for x,0.5 were obtained as rough estimates from
nonlinear resistive behavior, and is found to be nonzero
the whole range. We have also estimated the critical temp
ture from the peak of the phase susceptibilityx5(^m2&
2^m&2)/L3, wherem5u( iSW i u and SW 5@cos(u),sin(u)#, aver-
aged over the disorder, which measures the onset of lo
range phase coherence outside the glassy phase. As sho
Fig. 3~a!, this transition temperature decreases for increas
x and extrapolates to zero at a threshold valuexg;0.3. We
then expect that the rangex.xg should correspond to the
vortex ~chiral-! glass phase. We note that forx!xg the sus-
ceptibility peak agrees withTc showing that indeed the re
sistive transition corresponds to the phase-coherence tra
tion. Additional evidence for the vortex glass phase is a
provided by the change of the critical current with appli
external field. Figure 3~b! compares the behavior of theT
50 critical currentJc with and without a magnetic fieldB
applied transversely to the current direction. The exter
field acts as a uniform frustrationf 5Ba2/fo in the
XY-spin-glass model of Eq.~1!, wherea is the lattice spac-
ing of the Josephson network andfo the flux quantum, and
introduces a vortex lattice with dimensionless spacing av
3-3
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FIG. 3. ~a! Phase diagram showingS ~super-
conducting!, SCG ~superconducting chiral glass!
andN ~normal! phases as a function of temper
ture and concentrationx of p junctions.~b! Criti-
cal currents densitiesJc as a function ofx without
( f 50) and with (f 51/4) a uniform external
magnetic field. In~a! triangle symbols correspond
to critical temperatures estimated from the res
tivity behavior and squares from the phas
susceptibility peak.
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}1/f1/2. There is a large change ofJc for x,xg , where some
translational order at length scales large thanav is still pos-
sible, but there is essentially no change forx.xg , indicating
that in this range there is only short-range order. The cha
of behavior gives a very rough estimate23 of xg .

Finally, we compare the critical properties of the resist
transition with experiments. Nonlinear resistivity measu
ments in ceramic YBa2Cu4O8 bulk samples17 near the onse
of the paramagnetic Meissner effect have been interprete
a chiral-glass transition attributed to the presence ofp junc-
tions, with a nonzero linear resistivity belowTc . In the ex-
periments, the measured resistivityr was separated into
linear and nonlinear contribution through a low order exp
sion in the current density,r5ro1r2J21 . . . . Thelowest
order nonlinear contributionr2 was found to have a peak a
the transition with power-law behaviorr2}J2a and expo-
nenta;1.1(6), while the linear contributionro appears to
remain finite below this temperature. However, since
apparent linear contribution is very small and finite curre
bias was used, the limited accuracy of the data can
completely rule out a strict zero resistivity phase below t
temperature. It is of interest to verify to which exte
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the resistive transition as found here is consistent w
the observed peak in the nonlinear resistivity at the appa
transition temperature. If a resistive transition is assum
to occur at this temperature then the power-law behav
of r2 follows directly from the current-voltage scalin
near the transition temperature. Defining the nonlin
contribution asr25]2/]J2(E/J), the scaling behavior of Eq
~3!, obeyed by our numerical data, implies thatr2}J2a,
whenj→` near the critical temperature, with the expone
relationa5(52z)/2. Using the dynamical exponent of th
resistivity scaling,24 z54.4(4) from the present work an
z53.1 from the vortex-representation,14 gives the estimates
a50.3(3), and a50.95. These are comparable to th
observable value in the experiments within the errors.

We should note that the model considered here negl
screening of vortices due to inductance effects. For str
screening, the finite-temperature transition is destroyed8,14

However, it is possible that for very weak screening a res
tive transition is still possible.

This work was supported by FAPESP~Grant No. 03/
00541-0!.
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