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1. ABSTRACT

Nowadays, control systems of satellites
with rigid and flexible components are
increasingly being extended to advanced
applications, such as space uninhabited
vehicles with very demanding pointing
accuracy. The control design methods
presently available, including parameters and
states estimation, robust and adaptive
control, need more investigation to know
their capability and limitations. In that
context, the guaranty of the controller
performance depends not only on its good
design but also on the knowledge of all states
to be fed-back in order to improve the
overall control system efficiency. In this
paper, a Kalman filter methodology is used
to recover all the unmeasured states (elastic
displacement and its rates) considering that
only the states associated with rigid motion
are measured (angle and angular velocity).
To investigate the robustness of the Kalman
filter, one considers in the measurements
model phase a satellite model with three
flexible modes, whereas in the time and
measurement update phases the satellite
model will consider just one flexible mode.
Through the simulations, one observes that
the fidelity of the estimation process
enhances with the inclusion of more modes
into the satellite model. However, one
observes as well that even with a reduced
model in the update phase the robustness of
the Kalman filter is preserved once it is
properly tuned.
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3. INTRODUCTION

The use of small satellites has been a fast,
simple and of a low cost way of reaching
the space [1]. However, in the order to
conquer the space it’s necessary to launch
spacecrafts that involves rigid/flexible
structures. In that type of spacecrafts, the
influence of flexibility plays an important
role in the dynamics behavior as well as in
the performance of the Attitude Control
System (ACS). Other important aspect in
the study of the dynamics and control of
flexible space structure are: the degree of
interaction between the rigid and flexible
motion [2], maintenance of a ACS
performance in face the uncertainties of the
mathematical model [3], damping residual
vibrations in order to keep pointing
precision and states estimations [4]. This

paper introduces a state estimation
procedure using the Kalman filter
methodology to recover the flexible

coordinates from measurements of the rigid
part (angle and velocity angular). Section 2
presents a mathematical model of a simple
spacecraft based on a two flexible Euler-
Bernoulli beam connected to a rigid hub.
The equations of motion are derived
considering the torque as input, and angle
and angular velocity as outputs. Section 3
presents the Kalman filter state estimation
problem. Section 4 presents the simulation
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Figure 1: Satellite Mathematical Model

of the problem. Section 5 concludes the
paper.

4. SATELITE MATHEMATICAL MODEL

The satellite mathematical model used is
composed of a rigid platform with two
flexible appendices (see Figure 1). The
appendices are identical and opposite, being
considered as beam connected to the
platform, subject to rotational and vibrational
motion. The equations of motion are derived
using the Lagrange methodology, starting
from the expression of the kinetics and
potential energy of the system.

The inertial reference system is
represented by the axes 4,, A,, n,, which
coincides with the center of mass of the rigid
body characterized by the axes b,, b,, b,.

The vector r is the radius of the rigid body.
The vector x represents the position along

the axis b, in no deformed form. The vector

position in the appendage relative to the
inertial reference system is given by R. The
vector of elastic deformation, perpendicular

to the axis 131 ,is represented by y(x,t), and
6 is the satellite angular velocity. Therefore,

the vector velocity of any point in the
deformed appendage form, relative to the
inertial reference system is given by:

R;=—9ylA)] +[é(r+x)+}'/]l;2 (1)
5. EQUATIONS OF MOTION

The total kinetics energy of the system is
given by

T, = %Jhé2 +2f ply? + 25000+ %)+ 62 (r+x)” fix
()

where J, is the rotary inertial of the hub, p

is the mass density of the appendages, L is
the length of the appendage and y(x,t)

represents the elastic displacement. The
potential energy is given by:

L dzy ’ 3
V; =, (ED e dx 3)

where E is the modulus of elasticity and I the
moment of inertia of the beam. The
discretization of the system is done using
assumed mode method [4]. Therefore, the
elastic displacement y(x,t) is given by
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where q;(t) are the generalized coordinates
and ¢;(x) are the admissible functions. The

equations of motion for the rigid 6(t) and the

elastic q(t) motion, are found using the
Lagrange formulation:

T T
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where F; is the generalized force, and x; is
the ith element of the vector (x). After
derivation the equations of motion in matrix
form is given by

MX +Kx =Du (6)

where M represents the mass matrix, K is the
stiffness matrix and D in known as control
influence matrix. Transforming Equation (6)
in space state modal form, one has:

Mfj+Cn+Kn = Du (7
Here M, C, K and D represents mass,

damping, stiffness and control influence
matrices in modal form, respectively.

6. KALMAN FILTER METHODOLOGY

The complete dynamical model is
represented by:
n=An+Gw ®)

where n, =[n,7]" is the modal coordinates, o

is white gaussian noise, G is matrix unitary
and A is the system matrix that relates the
state linearly by

A{—(% —Ié}

The measured model is given by:

Y=Cn,+v 9

the output is the angle 6 and angular
velocity 6, with standard deviation of 0.05°
and 0.005°s, respectively. The matrix is
C=B" . The term v represents a white noise
vector with the following statical charac-
teristic v, = N(0,0.05°) »Vy =N(0,0.005°/s)

In the time update, the states are estimates
using

X = AX (10)
with initial conditions X, ,=%,,, and the
covariance is computed by

P=AP+PA" +GQG" —-PC"R"'CP (11)

with initial conditions P, , =P, ,. Equation
(11) is known as Riccati equation. In the

measurement update the states and
covariance matrix are calculated by

K, =P.C"(CP,_,C" +R]" (12)
P, =(I-K,C)P_, (13)
X, =X, +K, (v, —-CX,_)) (14)

where K represents the Kalman gain, and P
and % are the covariance and the state
updated. The errors between the actual state
and the estimated state is

At = x — & (15)
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7. SIMULATIONS

In order to investigate the robustness of
the filter, it has been done the simulation
with a satellite model with one, two and
three elastic modes. The structural
parameters are: radius r = 0.3048m, density
p=47.89Kg/m, damping ¢=0.2, L=1.2192m,
E = 7.735x10° Kg/m* , 1=1.293x10™"° Kg*m*
Jh = 10.84 Kg*m’, G=[04x4 Luxs 1', R=[0.05°
,0.005% 1", and Q= diag(10,10°,10°,10°]).



The initials conditions,®, =0.1, 6,=0.01,
PO =diag([107],,). Figure 2 the
difference between the ideal state and the
estimate state the “error” for the satellite
model with one, two and three modes. It can
be seen that angular velocity estimated,
remains in all modes, under the limits of
standard deviation. But for the angle it is
necessary 50 seconds for the filter to adapt
and have a good performance.

shows

Figure 3 shows a significant difference
between the model with one and two modes
in the flexible coordinate q; and qp.
However, that difference is negligible for the
model with two and three modes, which
means that the satellite can be modeled at
most with two modes without lost of
accuracy. This is correct because, when more
modes are included, the dynamics of the
system tend to stationary values.

8. CONCLUSIONS

In this work, one applies the Kalman filter
Methodoly to estimated the elastic
displacement, considering that the angle and
the angular velocity of a flexible satellite are
sensed. Having in mind the complexity of
putting a sensor on the elastic parts of the
satellite, the application of the Kalman filter
technique has been showed a good approach
to estimate indirectly the flexible parameters
of a rigid-flexible satellite. That approach

becomes more promising when it is
necessary to feedback the  elastic
measurements into the control system in
order to assure better pointing conditions
and/or better system performance.
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Figure 2 Errors for angle and angular velocity.
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Figure 3 Estimation of the elastic displacement q; and qp.



