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ABSTRACT—A reconstruction technique of bioluminescence eration proceeds until an objective function, representing a
sources in natural waters from in situ irradiance data is presentedeast squares fit of model results and experimental data, con-
The inverse problem is formulated as a nonlinear constrained opzerges to a specified small value. We use the Hydrolight
timization problem, assuming that the bioluminescence unknowr3 g code (Mobley, 1995), which solves numerically the time-
profile can be represented by a sum of distributed Gaussian Sourc‘?ﬁdependent one-dimensional radiative transfer equation in
The objective function is defined as the square Euclidean nor atural water bodies using the invariant imbedding theory.

of the difference vector between experimental and computed data. Thi h d b tended for fl i
The authors use the Hydrolight 3.0 code, which solves numerically IS approach cou € extendead for fluorescence est-

the time-independent one-dimensional radiative transfer equatioA'ation, since it is possible to model this phenomenon as
in natural water bodies using the invariant imbedding theory. Thean internal source of light in the wavelength of fluorescence
proposed inversion technique was tested with noise-corrupted syemission. Fluorescence is directly related to the concentra-
thetic data and yielded good numerical results. The influence of théion of chlorophyll (e.g., from phytoplankton) or pollutants,
number of Gaussian sources, as well as their standard deviations which have economical relevance.

the estimation, is analyzed.
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Implicit inversion techniques require repeated resolution

of the direct model. Various numerical models are used for
computing underwater radiance distributions, generally in-
Bioluminescence is the phenomenon of light emissionvolving Monte Carlo techniques (Mobley, Gentili, Gordon,
by marine organisms, which range in size from bacteria t&tnd colleagues, 1993).
fish and are found everywhere in marine waters. Estimation In the present study, the time-independent one-
of underwater bioluminescence sources is an inverse protslimensional radiative transfer equation is solved by the Hy-
lem of great relevance in oceanography, particularly for thedrolight 3.0 code using the invariant imbedding method de-
study of the biological-optical processes in the oceans (Mobscribed in Mobley (1989, 1994). This software computes
ley, 1994). Some recent articles have studied this subje@Pectral radiances and the upward/downward plane and scalar
(Sanchez, Yi, and McCormick, 1992; Tao, McCormick, andirradiances at chosen depths (equally spaced or not). The
Sanchez, 1994). model inputs are the inherent optical properties of the water,
The classical direct or forward radiative transfer problemthe internal light sources, the sky spectral radiance distri-
in hydrologic optics involves the determination of the radi- bution, the state of the wind-blown water surface, and the
ance distribution in a body of water given known boundarybottom boundary conditions. o
conditions and inherent optical properties. The correspond- The monochromatic radiance transfer equation, in terms
ing inverse radiative transfer problem arises when physica®f the optical deptit (with dt = c(z) dz, wherez is the
properties and/or internal light sources must be estimatedertical coordinate), is given by
from radiometric measurements of underwater light fields.

1. Introduction

In the last decades, the development of inversion methodolo- dL(, %) ,

gies for radiative transfer problems has been an important H dt = —L@& &) + wo(®) / L&)
research popic in many branches of science and engineering E (1)
(McCormick, 1992). BE — £)dE + S, E) ,

In this paper, we present an implicit inversion technique

for reconstruction of bioluminescent isotropic source distri- herel is th di is th tteri h function:
butions from in situ radiometric measurements. The algoY'¢"® bls ne La '@”Cfﬁ‘ IS the sca elgng phase UZC. lon;
rithm is formulated as a constrained nonlinear optimizatior}‘*ﬁ% bea n< ;:fe;u?atistl)ggc%;f(f:iiitggtln% d‘r’}) aereet’h; aab;;)r tlﬁ)n
problem_in which the direct problem is iteratively solved for fand scattering coefiicients respe?tivglyﬁ/ o) ande (0 p(b)
successive approximations of the unknown parameters. Iélre the incident and scattered directions, respectively, for an
infinitesimal beam§ is the polar angley is the azimuthal

- angle;S is the source ternf is the scattering phase function;
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dL(c; 6;, ; dM(, 1)
u% = L@ 00 S =MD K@D M wiD) = Ly,
+ @@ Y D L6, 4) (20  wherem is the dimension of the polar discretization.
ros This fundamental solution maps the radiances from one
BOr, bs — 6, b)) depth (levelw, at the surface) to another (lewgl For the
+ 8@ 6, 0)) nonhomogeneous case, there is an internal source term given
by the convolution of the internal source willfi:
where
1 L, ) =Ly(w;l) M(w,t;1)
L 0) = 5 [ [ L@o.o) sinoavds . (3) ¢
=i / / /
3% + [ spein Mz a

w

The radiance can be spectrally decomposed using its
Fourier polynomial representation. For convenience, down- The rearrangement of the expression leads to the spec-
ward radiances are denoted by™and upward radiances by tral global interaction equations for a finite slab of water, as
B shown below (thelf elements were rewritten as new matri-
ces), where thd's are called the spectral standard transmit-
tance matrices and thRs are called the spectral standard

n

+
LE(5; 6i, 0)) = Z [L1(&:6;, 1) cosl o)) reflectance matrices that rule how the light is transported
1=0 through the slab of water. This first set is for a slab between
+ in(g; 0;,1) sin(/ q)j)] . the surfacew) and a levet:
Then, the radiance can be expressed as two sets of vectors L, (w;l) ! _ LWE @n 1"
(p = 1 for the cosine spectral amplitude, apd= 2 for the L;(c; ) S L LywiD

sine spectral amplitude). For a given set, eacbrresponds
to a discretized azimuthal angle, and, for a givereach T, w;l) R;;(c, w; )
column corresponds to a discretized polar angle: R,(w, ;1) Tjw,gl) |

L7, 1) = [L}F(C; 01, 0) L7 02,1) L7(t03,0) A second set can be found for a slab between lewasid
the bottom p):
L7 (& 0, D).

[ Ly 1) TZ [ Ly, (b; 1) ]T
Rewriting the radiative transfer equation, some terms can L} (b 1) L@

be identified as being the local spectral reflectangeatd B N

local spectral transmittance)(matrices, which lead to the T,b.00) RO,

local interaction equations that show how the light interacts R, b;D) T bl |

locally with an infinite slab of water:

For both sets, the output (left-hand side) radiance ampli-

T + T tudes are unknown and the incident (right-hand side) radiance
=Ly & D@ DHL,E D e DS, €. 1) - amplitudes are given. To solve the radiative transfer equa-
tion, the unknown spectral standard operators must be found

Grouping the upward/downward radiances as two-rowfor clarity, the internal source term is not shown).

matrices yields an even more compact form for the local in-  Instead of integrating the local interaction equations in
teraction equations: order to findM, a set of Riccati differential equations can

be derived for these standard operators. This is achieved by
dL,(, 1) L DK@ D+ S differentiating the global interaction equations and using the
T =Lp&DKED+S), former local interaction equations to replacegluerivatives
of the amplitude radiances. Grouping terms in a convenient
_[r= 7+] _ o= ot] . way and assuming that each equation must be equal to zero
where L, = L, LP]’ SP_ - [S_P ‘?P]’ gndK IS the. for any radiance amplitude leads to a set of Riccati differential
spectral local transfer matrix, which is an inherent Opt'ca|equations for the spectral standard operators.
property: Integration of these equations for a “bare” slab of water
yields these operators using formerly calculated local trans-
K= [ =€ D e D) } ) mittances and reflections. Instead of solving the problem
=@, ) (@D directly, the invariant imbedding method allows one to con-
struct the water body by integrating the Riccati equations,
Concerning this equation, the fundamental solutdMn  imbedding adjacent layers of water. Boundary conditions
source free, must comply to the following matrix differential are then imbedded into the bare-slab operators, completing
equation: the solution.

d LT (1)
dg

162 e VOol. 3, No. 3, August 1998



3. Inverse Problem bounds, linear and nonlinear constraints), using a sequential

. . . programming method. For theh iteration, the calculation
Inverse problems are mathematically ill posed in the sensgrgceeds as follows:

that existence, uniqueness, or stability of their solutions can-

not be ensured. Several methods have been proposed for 1. Solve the direct problem fg” and compute the ob-
solving inverse radiative transfer problems. An excellent jective functionJ (p").

overview of the recent developments is found in McCormick

(1992). In this paper, we describe an implicit inversion tech- 2. Compute by finite differences the gradidht/ (p").
nique for reconstruction of bioluminescent isotropic source

distributions from in situ radiometric measurements. 3. Compute a pOS|t|ve.-de£|n|te quasi-Newtonian approx-
The bioluminescence source term is approximated by a  imation to the HessiaRl™:
summation of isotropic Gaussian sources, with uniform stan- b (b Hr-Lyn (T -t
dard deviatiorv, as follows: H" = H" 1 4 o _ )
(bn)T ur (un)T H»-1 u” ’
NP
S(z,0,9) = S(z) = Z _Pr_ o~ (@—2%/20% (4) whereb” = p* — p"~1
oV uw = VJ(p") = VI (p" Y.

4. Compute the search directidf as a solution of the

Denoting byp = s D2y e s the vector of un- . , X
g byp [pl p2 pN”] following quadratic programming subproblem:

known bioluminescence Gaussian source strengths to be de-
termined by the inverse analysis, the inverse radiative transfer
problem can be formulated as a nonlinear constrained mini-

mization problem,

Minimize [VJ (p")"]7 d"+3(d")T (H") d" sub-
jecttol, — py <dg <uq—py -

- _ 5. Setp"t! = p* + p"d", where the step length”
minJ(p) , I, <ps<u; , g=1,...,N, , (5 minifnizes](;"+ﬁ§d”). p length
where the lower and upper bounglsandu, are chosen

in order to allow the inversion to lie within some a pri-
ori known physical limits. The bioluminescent sources are
equally spaced in depth, defining a source grid of resolu- .
tion Az = Zmax /Ny, Wherez,,q, corresponds to maximum 4. Numerical Results
depth of the computational domain. The misfit between di-
rect model and experimental data is given by

6. Test the convergence; stop, or return to step 1.

The performance of the inversion method presented in
the previous section was evaluated for different values of

N, exp 2 the number of sourcesy,, and their standard deviatios,
Jp) = YiZy [(E.; — Euwi(p) Synthetic irradiance data were generated by the same direct
+ (Esfp — Eg4, (p))Z analytical model used in the inver_se solyer for a single wave-
exp ) lengthx = 550 nm. A 2% Gaussian noise was added to the
+ (Eqy.; — Eou,i(p)) (6)  exact values to reproduce actual experimental errors. The

computational domain was discretized into a vertical irradi-
ance grid ofN, = 11 nodes, ranging from 0 to 30 m. In all
aﬁimulationss was given by the one-term Henyey-Greenstein
gcattering phase function, defined as follows:

+(Eq) — Eoai(p))? ]

The irradiance data are composed by the spectr
upward and downward scalar irradiances, defined a
Eo, , (§) = fEu/d L(c, £)d, and by the spectral upward 1 ) , o
and downward plane irradiances, defined Bg4(Q) = Bp) = —(1—-gHA+s" 2 cos) "2, (7)
fEu/d L(c, ) cosfdS2, whered2 = sin6d6dé is an in-
finitesimal solid angle. These irradiances are given fowherey isthe scattering angle (formed byandk directions)

i =1,2,..., N, depths, defining an irradiance grid of reso- andg = 0.90. The inherent optical properties were assumed
lution Az = Zmax/N:. to be constant, and Monterey Bay water conditions, under

In the absence of an explicit solution, the optimizationsunlight and without wind, were considered, taken from a
problem defined by equation (5) is iteratively solved by theSimilar work (Tao, McCormick, and Sanchez, 1994). At the
guasi-Newtonian optimization algorithm EO4UCF from the Sea surface, a cardioidal radiance distribution is taken to sim-
NAG Fortran Library (1993). This approach has been preLilate the diffuse sunlight (1 W/fmm), the bottom being
viously adopted with success by Lesnic, Elliot, and Inghanfonsidered an infinitely thick homogeneous layer of water.
(1995) and Ramos and de Campos Velho (1996). An outline The computations were performed until convergence was

of the algorithm is described below. attained using a uniform zero-value bioluminescence profile
as the starting poinp®. For each test case, we computed the

3.1 Optimization Algorithm normalized values of (p/) and the root mean square error,
defined b

The minimization of the objective functiaf(p) given by y

equation (5), subject to simple bounds pnis solved us- N 1/2

ing a first-order optimization algorithm from the NAG For- IR 2,0 "

tran Library (1993). This routine is designed to minimize €~ Z(pq =Py D (Pg = P ) G

an arbitrary smooth function subject to constraints (simple q=1
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wherep/ refers to the value of the vector of parameters aftel
the final convergence of the inversion algorithm is attained.

4.1 Case 1

The inversion method was first applied to a biolumines-
cence profile consisting of two Gaussian sources located
depths ot = 10.5 mand 166 m, witho = 0.75. Both the di-
rect and inverse models were run féf = 11 andN,, = 10.
This case was run without noise and 2% noise.

The evolution of the normalized objective function and
root mean square error for the situations described above a
plotted in Figures 1 and 2. Itcan be seen thatthere existsad
lay between the objective function and the root mean squar
error decay. It is interesting to point out that, in the pres-
ence of noise, the objective function did not decay to zero
Numerical values for the normalized objective function and
root mean square error are shown in Table 1. However, Fig
ure 3 shows that the inversion algorithm properly recoverec
the source strength variation within both shape and mag-
nitude.

4.2 Case 2

To check the proposed inversion technique in a more diffi-
cult configuration, we considered a bioluminescence profile
generated by a combination of hyperbolic tangents, centere
at a depth that does not match the source grid of the invers
model. In this second test case, due to the low resolution ¢
the inversion grid, the exact solution was reconstructed b
a set of neighboring sources, as presented in Figure 4. Tt
accuracy of this result can be improved by increasing the
number of sourced’, or by changing the standard deviation

TABLE 1—NOISE INFLUENCE FOR THE FINAL VALUES
OF THE NORMALIZED OBJECTIVE FUNCTION AND ROOT
MEAN SQUARE ERROR FOR TEST CASE 1

Noise J(p)/J(p%) €
No noise 0.2241x 1079 0.1689x 104
2% noise 0.1889x 100 0.4692x 1071
Normalized value
1 o . Obj function
LO0 T —————y CRMSError T
0.90 L —
<1.x0‘ﬁ -
0.70 1
0.60 i— T‘

050 |- 5
0.40

0.30

0.20

0.101-

0.00

|
0.00

iterations

100.00 200.00

Figure 1. Normalized objective function and root mean square
error for test case 1 (no noise, o = 0.75, and N = 10).
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Figure 2. Normalized objective function and root mean square
error for test case 1 (2% noise, o = 0.75, and N, = 10).
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Figure 3. Estimated and exact profiles for test case 1

(2% noise, N, =10, 0 = 0.75).

o of the Gaussian sources in the inverse model, as shown in
Figures 5 and 6 and Table 2. Obviously, the increast pf
is more effective but demands more processing time.

5. Conclusion

In this paper, we introduced a reconstruction technique of
bioluminescence sources in natural waters from in situ irra-
diance data. Assuming that the unknown bioluminescence
profile can be represented by a sum of distributed Gaussian
sources, the inverse problem was formulated as a nonlinear
constrained optimization problem and iteratively solved by a
guasi-Newtonian minimization routine.

The proposed inversion technique was tested with noise-
corrupted synthetic data and yielded good numerical results.
The influence of the number of Gaussian sources and their



TABLE 2—NORMALIZED OBJECTIVE FUNCTION AND ROOT MEAN SQUARE ERROR FOR TEST CASE 2

0 =075 N, = 10

N, =10 N, = 20 0 =075 o =150

J(p)/T(p%) 0.319911 0.308089 0.319911 0.325750
¢ 0.539159 0.180156 0.539159 0.229669

Source strensth (W/m3.am) x 1073 Source strength (W/m3.nm) x 10-3
streng am) x

P exact ‘ L exact
20.00 » j estimated 20.00 |-
1
18.00} i 18.00 -
16.00 |- | 16.00 |-
14001 - . 14.00 -
12,00 = 4 12.00 -
1000 1 4 10.00 |-
8.00 4 8.00
6.00 - - 6.00 -
4.00 b 1.00
200 - 2.00 L
0.00 - : B 000 b 2555 |
! depth (m) | ! : depth (m)
0.00 10.00 20.00 30,00 0.00 10,00 20.00 30.00

Figure 4. Estimated and exact profiles for test case 2 Figure 6. Influence of the standard deviations in the inverse
(2% noise, N, = 10, 0 = 0.75). solution (case 2, 2% noise, N, = 10).
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