
A Methodology for Internal Light Sources Estimation

by S. Stephany, F. M. Ramos, H. F. de Campos Velho, and C. D. Mobley

ABSTRACT—A reconstruction technique of bioluminescence
sources in natural waters from in situ irradiance data is presented.
The inverse problem is formulated as a nonlinear constrained op-
timization problem, assuming that the bioluminescence unknown
profile can be represented by a sum of distributed Gaussian sources.
The objective function is defined as the square Euclidean norm
of the difference vector between experimental and computed data.
The authors use the Hydrolight 3.0 code, which solves numerically
the time-independent one-dimensional radiative transfer equation
in natural water bodies using the invariant imbedding theory. The
proposed inversion technique was tested with noise-corrupted syn-
thetic data and yielded good numerical results. The influence of the
number of Gaussian sources, as well as their standard deviations in
the estimation, is analyzed.
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1. Introduction

Bioluminescence is the phenomenon of light emission
by marine organisms, which range in size from bacteria to
fish and are found everywhere in marine waters. Estimation
of underwater bioluminescence sources is an inverse prob-
lem of great relevance in oceanography, particularly for the
study of the biological-optical processes in the oceans (Mob-
ley, 1994). Some recent articles have studied this subject
(Sanchez, Yi, and McCormick, 1992; Tao, McCormick, and
Sanchez, 1994).

The classical direct or forward radiative transfer problem
in hydrologic optics involves the determination of the radi-
ance distribution in a body of water given known boundary
conditions and inherent optical properties. The correspond-
ing inverse radiative transfer problem arises when physical
properties and/or internal light sources must be estimated
from radiometric measurements of underwater light fields.
In the last decades, the development of inversion methodolo-
gies for radiative transfer problems has been an important
research topic in many branches of science and engineering
(McCormick, 1992).

In this paper, we present an implicit inversion technique
for reconstruction of bioluminescent isotropic source distri-
butions from in situ radiometric measurements. The algo-
rithm is formulated as a constrained nonlinear optimization
problem in which the direct problem is iteratively solved for
successive approximations of the unknown parameters. It-
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eration proceeds until an objective function, representing a
least squares fit of model results and experimental data, con-
verges to a specified small value. We use the Hydrolight
3.0 code (Mobley, 1995), which solves numerically the time-
independent one-dimensional radiative transfer equation in
natural water bodies using the invariant imbedding theory.

This approach could be extended for fluorescence esti-
mation, since it is possible to model this phenomenon as
an internal source of light in the wavelength of fluorescence
emission. Fluorescence is directly related to the concentra-
tion of chlorophyll (e.g., from phytoplankton) or pollutants,
which have economical relevance.

2. Direct Model

Implicit inversion techniques require repeated resolution
of the direct model. Various numerical models are used for
computing underwater radiance distributions, generally in-
volving Monte Carlo techniques (Mobley, Gentili, Gordon,
and colleagues, 1993).

In the present study, the time-independent one-
dimensional radiative transfer equation is solved by the Hy-
drolight 3.0 code using the invariant imbedding method de-
scribed in Mobley (1989, 1994). This software computes
spectral radiances and the upward/downward plane and scalar
irradiances at chosen depths (equally spaced or not). The
model inputs are the inherent optical properties of the water,
the internal light sources, the sky spectral radiance distri-
bution, the state of the wind-blown water surface, and the
bottom boundary conditions.

The monochromatic radiance transfer equation, in terms
of the optical depthζ (with dζ = c(z) dz, wherez is the
vertical coordinate), is given by

µ
dL(ζ, ξ)

dζ
= −L(ζ, ξ) + ω0(ζ)

∫

Ξ

L(ζ, ξ′)

· β(ξ′ → ξ) dξ′ + S(ζ, ξ) ,

(1)

whereL is the radiance;β is the scattering phase function;
ω0 = b/c is the single scattering albedo;c = a + b is
the beam attenuation coefficient;a andb are the absorption
and scattering coefficients, respectively;ξ′(θ′, φ′)andξ(θ, φ)
are the incident and scattered directions, respectively, for an
infinitesimal beam;θ is the polar angle;φ is the azimuthal
angle;S is the source term;β is the scattering phase function;
andµ = cos(θ).

Equation (1) can be directionally discretized by quad av-
eraging in the unit sphereΞ the radiancesL(ζ; θ, φ) for a
finite number of azimuthal and polar angles:
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µ
dL(ζ; θi , φj )

dζ
= −L(ζ; θi , φj )

+ ω0(ζ)
∑

r

∑
s

L(ζ; θr , φs) (2)

· β(θr , φs → θi , φj )

+ S(ζ, θi , φj ) ,

where

L(ζ; θi , φj ) = 1

Ξij

∫

θ

∫

φ

L(ζ; θ, φ) sinθ dθdφ . (3)

The radiance can be spectrally decomposed using its
Fourier polynomial representation. For convenience, down-
ward radiances are denoted by “+” and upward radiances by
“−”:

L±(ζ; θi , φj ) =
n∑

l=0

[
L±

1 (ζ; θi , l) cos(l φj )

+ L±
2 (ζ; θi , l) sin(l φj )

]
.

Then, the radiance can be expressed as two sets of vectors
(p = 1 for the cosine spectral amplitude, andp = 2 for the
sine spectral amplitude). For a given set, eachl corresponds
to a discretized azimuthal angle, and, for a givenl, each
column corresponds to a discretized polar angle:

L∓
p (ζ, l) =

[
L∓

p (ζ; θ1, l) L∓
p (ζ; θ2, l) L∓

p (ζ; θ3, l)

. . . L∓
p (ζ; θm, l)

]
.

Rewriting the radiative transfer equation, some terms can
be identified as being the local spectral reflectance (ρ) and
local spectral transmittance (τ) matrices, which lead to the
local interaction equations that show how the light interacts
locally with an infinite slab of water:

∓d L∓
p (ζ, l)

dζ
=L∓

p (ζ, l) τ(ζ, l)+L±
p (ζ, l) ρ(ζ, l)+S∓

p (ζ, l) .

Grouping the upward/downward radiances as two-row
matrices yields an even more compact form for the local in-
teraction equations:

d Lp(ζ, l)

dζ
= Lp(ζ, l)K(ζ, l) + Sp,

whereLp =
[
L−

p L+
p

]
; Sp =

[
S−

p S+
p

]
; and K is the

spectral local transfer matrix, which is an inherent optical
property:

K(ζ, l) ≡
[ −τ(ζ, l) ρ(ζ, l)

−ρ(ζ, l) τ(ζ, l)

]
.

Concerning this equation, the fundamental solutionM,
source free, must comply to the following matrix differential
equation:

d M(ζ, l)

dζ
= M(w, ζ; l) K(ζ; l) ; M(w, w; l) = Im×m,

wherem is the dimension of the polar discretization.
This fundamental solution maps the radiances from one

depth (levelw, at the surface) to another (levelζ). For the
nonhomogeneous case, there is an internal source term given
by the convolution of the internal source withM:

Lp(ζ; l) = Lp(w; l) M(w, ζ; l)

+
ζ∫

w

Sp(ζ′; l) M(ζ′, ζ; l) dζ′ .

The rearrangement of the expression leads to the spec-
tral global interaction equations for a finite slab of water, as
shown below (theM elements were rewritten as new matri-
ces), where theT s are called the spectral standard transmit-
tance matrices and theRs are called the spectral standard
reflectance matrices that rule how the light is transported
through the slab of water. This first set is for a slab between
the surface (w) and a levelζ:

[
L−

p (w; l)

L+
p (ζ; l)

]T

=
[

L−
p (ζ; l)

L+
p (w; l)

]T

[
T −

p (ζ, w; l) R+
p (ζ, w; l)

R−
p (w, ζ; l) T +

p (w, ζ; l)

]
.

A second set can be found for a slab between levelζ and
the bottom (b):

[
L−

p (ζ; l)

L+
p (b; l)

]T

=
[

L−
p (b; l)

L+
p (ζ; l)

]T

[
T −

p (b, ζ; l) R+
p (b, ζ; l)

R−
p (ζ, b; l) T +

p (ζ, b; l)

]
.

For both sets, the output (left-hand side) radiance ampli-
tudes are unknown and the incident (right-hand side) radiance
amplitudes are given. To solve the radiative transfer equa-
tion, the unknown spectral standard operators must be found
(for clarity, the internal source term is not shown).

Instead of integrating the local interaction equations in
order to findM, a set of Riccati differential equations can
be derived for these standard operators. This is achieved by
differentiating the global interaction equations and using the
former local interaction equations to replace theζ derivatives
of the amplitude radiances. Grouping terms in a convenient
way and assuming that each equation must be equal to zero
for any radiance amplitude leads to a set of Riccati differential
equations for the spectral standard operators.

Integration of these equations for a “bare” slab of water
yields these operators using formerly calculated local trans-
mittances and reflections. Instead of solving the problem
directly, the invariant imbedding method allows one to con-
struct the water body by integrating the Riccati equations,
imbedding adjacent layers of water. Boundary conditions
are then imbedded into the bare-slab operators, completing
the solution.
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3. Inverse Problem

Inverse problems are mathematically ill posed in the sense
that existence, uniqueness, or stability of their solutions can-
not be ensured. Several methods have been proposed for
solving inverse radiative transfer problems. An excellent
overview of the recent developments is found in McCormick
(1992). In this paper, we describe an implicit inversion tech-
nique for reconstruction of bioluminescent isotropic source
distributions from in situ radiometric measurements.

The bioluminescence source term is approximated by a
summation of isotropic Gaussian sources, with uniform stan-
dard deviationσ, as follows:

S(z, θ, φ) = S(z) =
Np∑
k=1

pk

σ
√

2π
e−(z−zk)

2/2σ2
. (4)

Denoting byp = [
p1, p2, . . . , pNp

]
the vector of un-

known bioluminescence Gaussian source strengths to be de-
termined by the inverse analysis, the inverse radiative transfer
problem can be formulated as a nonlinear constrained mini-
mization problem,

min J (p) , lq ≤ pq ≤ uq , q = 1, . . . , Np , (5)

where the lower and upper boundslq and uq are chosen
in order to allow the inversion to lie within some a pri-
ori known physical limits. The bioluminescent sources are
equally spaced in depth, defining a source grid of resolu-
tion ∆zp = zmax/Np, wherezmax corresponds to maximum
depth of the computational domain. The misfit between di-
rect model and experimental data is given by

J (p) = ∑Nz

i=1 [ (E
exp
u,i − Eu,i(p))2

+ (E
exp
d,i − Ed,i(p))2

+ (E
exp
0u,i − E0u,i(p))2 (6)

+ (E
exp
0d,i − E0d,i(p))2 ] .

The irradiance data are composed by the spectral
upward and downward scalar irradiances, defined as
E0u/d

(ζ) = ∫
Ξu/d

L(ζ, ξ) dΩ, and by the spectral upward
and downward plane irradiances, defined asEu/d(ζ) =∫
Ξu/d

L(ζ, ξ) cosθ dΩ, wheredΩ = sinθ dθdφ is an in-
finitesimal solid angle. These irradiances are given for
i = 1, 2, . . . , Nz depths, defining an irradiance grid of reso-
lution ∆zE = zmax/Nz.

In the absence of an explicit solution, the optimization
problem defined by equation (5) is iteratively solved by the
quasi-Newtonian optimization algorithm E04UCF from the
NAG Fortran Library (1993). This approach has been pre-
viously adopted with success by Lesnic, Elliot, and Ingham
(1995) and Ramos and de Campos Velho (1996). An outline
of the algorithm is described below.

3.1 Optimization Algorithm

The minimization of the objective functionJ (p) given by
equation (5), subject to simple bounds onp, is solved us-
ing a first-order optimization algorithm from the NAG For-
tran Library (1993). This routine is designed to minimize
an arbitrary smooth function subject to constraints (simple

bounds, linear and nonlinear constraints), using a sequential
programming method. For thenth iteration, the calculation
proceeds as follows:

1. Solve the direct problem forpn and compute the ob-
jective functionJ (pn).

2. Compute by finite differences the gradient∇ J (pn).

3. Compute a positive-definite quasi-Newtonian approx-
imation to the HessianHn:

Hn = Hn−1 + bn (bn)T

(bn)T un
− Hn−1 un (un)T Hn−1

(un)T Hn−1 un
,

wherebn = pn − pn−1

un = ∇J (pn) − ∇J (pn−1).

4. Compute the search directiondn as a solution of the
following quadratic programming subproblem:

Minimize [∇J (pn)n]T dn+ 1
2(dn)T (Hn) dn sub-

ject tolq − pn
q ≤ dq ≤ uq − pn

q .

5. Setpn+1 = pn + βn dn, where the step lengthβn

minimizesJ (pn + βn dn).

6. Test the convergence; stop, or return to step 1.

4. Numerical Results

The performance of the inversion method presented in
the previous section was evaluated for different values of
the number of sources,Np, and their standard deviation,σ.
Synthetic irradiance data were generated by the same direct
analytical model used in the inverse solver for a single wave-
lengthλ = 550 nm. A 2% Gaussian noise was added to the
exact values to reproduce actual experimental errors. The
computational domain was discretized into a vertical irradi-
ance grid ofNz = 11 nodes, ranging from 0 to 30 m. In all
simulations,β was given by the one-term Henyey-Greenstein
scattering phase function, defined as follows:

β(ψ) = 1

4π
(1 − g2)(1 + g2 − 2g cos(ψ))−3/2 , (7)

whereψ is the scattering angle (formed byξ′ andξ directions)
andg = 0.90. The inherent optical properties were assumed
to be constant, and Monterey Bay water conditions, under
sunlight and without wind, were considered, taken from a
similar work (Tao, McCormick, and Sanchez, 1994). At the
sea surface, a cardioidal radiance distribution is taken to sim-
ulate the diffuse sunlight (1 W/m2 nm), the bottom being
considered an infinitely thick homogeneous layer of water.

The computations were performed until convergence was
attained using a uniform zero-value bioluminescence profile
as the starting point,p0. For each test case, we computed the
normalized values ofJ (pf ) and the root mean square error,
defined by

ε =

 Nz∑

q=1

(p
f
q − pexact

q )2/(p0
q − pexact

q )2




1/2

, (8)
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wherepf refers to the value of the vector of parameters after
the final convergence of the inversion algorithm is attained.

4.1 Case 1

The inversion method was first applied to a biolumines-
cence profile consisting of two Gaussian sources located at
depths ofz = 10.5 m and 16.5 m, withσ = 0.75. Both the di-
rect and inverse models were run forNz = 11 andNp = 10.
This case was run without noise and 2% noise.

The evolution of the normalized objective function and
root mean square error for the situations described above are
plotted in Figures 1 and 2. It can be seen that there exists a de-
lay between the objective function and the root mean square
error decay. It is interesting to point out that, in the pres-
ence of noise, the objective function did not decay to zero.
Numerical values for the normalized objective function and
root mean square error are shown in Table 1. However, Fig-
ure 3 shows that the inversion algorithm properly recovered
the source strength variation withz in both shape and mag-
nitude.

4.2 Case 2

To check the proposed inversion technique in a more diffi-
cult configuration, we considered a bioluminescence profile
generated by a combination of hyperbolic tangents, centered
at a depth that does not match the source grid of the inverse
model. In this second test case, due to the low resolution of
the inversion grid, the exact solution was reconstructed by
a set of neighboring sources, as presented in Figure 4. The
accuracy of this result can be improved by increasing the
number of sourcesNp or by changing the standard deviation

TABLE 1—NOISE INFLUENCE FOR THE FINAL VALUES
OF THE NORMALIZED OBJECTIVE FUNCTION AND ROOT
MEAN SQUARE ERROR FOR TEST CASE 1

Noise J (p)/J (p0) ε

No noise 0.2241× 10−9 0.1689× 10−4

2% noise 0.1889× 10+0 0.4692× 10−1

Figure 1. Normalized objective function and root mean square
error for test case 1 (no noise, σ = 0.75, and Np = 10).

Figure 2. Normalized objective function and root mean square
error for test case 1 (2% noise, σ = 0.75, and Np = 10).

Figure 3. Estimated and exact profiles for test case 1
(2% noise, Np = 10, σ = 0.75).

σ of the Gaussian sources in the inverse model, as shown in
Figures 5 and 6 and Table 2. Obviously, the increase ofNp

is more effective but demands more processing time.

5. Conclusion

In this paper, we introduced a reconstruction technique of
bioluminescence sources in natural waters from in situ irra-
diance data. Assuming that the unknown bioluminescence
profile can be represented by a sum of distributed Gaussian
sources, the inverse problem was formulated as a nonlinear
constrained optimization problem and iteratively solved by a
quasi-Newtonian minimization routine.

The proposed inversion technique was tested with noise-
corrupted synthetic data and yielded good numerical results.
The influence of the number of Gaussian sources and their
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TABLE 2—NORMALIZED OBJECTIVE FUNCTION AND ROOT MEAN SQUARE ERROR FOR TEST CASE 2
σ = 0.75 Np = 10

Np = 10 Np = 20 σ = 0.75 σ = 1.50

J (p)/J (p0) 0.319911 0.308089 0.319911 0.325750
ε 0.539159 0.180156 0.539159 0.229669

Figure 4. Estimated and exact profiles for test case 2
(2% noise, Np = 10, σ = 0.75).

Figure 5. Influence of the number of sources in the inverse
solution (case 2, 2% noise, σ = 0.75).

standard deviations in the estimation was analyzed. A sig-
nificant issue to point out is that the representation of the un-
known bioluminescent profiles by means of Gaussian sources
make unnecessary the use of any regularization technique
once these functions are inherently smooth. The extension
of the present inversion technique to the estimation of inher-
ent optical properties is currently being carried out.

Figure 6. Influence of the standard deviations in the inverse
solution (case 2, 2% noise, Np = 10).
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