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Abstract: In this paper a state observer method that may be used with a feedback gain
matrix designed to quadratic stabili zation is proposed. This observer uses the guaranteed
cost concept, the second method of Lyapunov and satisfies stabilit y condition to “one-
way” connected systems. This method is used to a class of discrete time varying systems
with bounded time variance. State vector will be estimated if there exist solution to
modified Riccati equation.
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1. INTRODUCTION

The controller design problem using state feedback
has been treated for a long time by state observer
designs (state estimator) when the state is impossible,
or inappropriate, to be measured (O'Reill y, 1983).
This work want contribute with a new line of solution
showing a new method to estimate the state vector of
a dynamic system using controllers that make use of
the guaranteed cost concept (Chang e Peng, 1972;
Kienitz, 1990a) to evaluate the system performance,
the second method of Lyapunov (Kalman e Bertram,
1960) to consider stabilit y conditions and the stabilit y
condition to “one-way” connected systems (Kienitz,
1990b).

2. PROBLEM STATEMENT

Consider the global system presented at figure 1
composed by the system to be controlled, the state
observer, and the feedback gain:
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figure 1

State space equations to the system are presented
bellow:

( ) ( )[ ] ( ) ( )[ ] ( )x x uk A A k B B k+ = + + +1 ∆ ∆k k (1)
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where:



x(k) ∈R n  is the state vector,

u(k) ∈R m  is the control vector,

y(k) ∈R q  is the output vector,

∃x(k) ∈R n  is the estimated state vector,

A B Cnxn nxm qxn∈ ∈ ∈R R R, ,

( ) ( ) ( )∆A k D F k E D R F k E Rnxp pxp pxn= ∈ ∈ ∈1 1 1 1, , ,R

( ) ( ) ( )∆B k D F k E D R F k E Rnxp pxp pxm= ∈ ∈ ∈2 2 2 2, , ,R

C qxn∈R , ( )F k pξ ξ ξ
2 2

≤ ∀ ∈R , e

( )G k  is the gain matrix to correct the estimated
vector.

State vector will be assintotically estimated if the
error, ( ) ( ) ( )e x xk k k= − ∃ , satisfies the condition

( )lim
k

k
→∞

=e 0.

Such way, the global state space equation is achieved
by using equation (1) and (3), and substituting the
state feedback, ( ) ( ) ( )u xk K k k= − ∃ .
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Applying a linear transformation, “T” , to get

( ) ( )[ ] ( ) ( )[ ]x e x xk k T k kT T+ + = + +1 1 1 1∃ , the

global system may be rewritten as:
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The separation principle presents that dynamic of
global system is the dynamic of system with feedback
associated and the dynamic of estimator. Thus, the
controller design and the state estimator design can
be done independently (O'Reill y, 1983). If the system
is time varying, this principle make also possible that
the state observer can be used together with feedback
gain matrix designed to quadratic stabili zation. It is
possible if a suff icient stabilit y condition to
subsystems “one-way” connected (Kienitz, 1995) is
satisfied.

Subsystems with a block triangular dynamic system
matrix are known as “one-way” subsystem.

Since the equation (5) presents upper triangular
matrix, the system will be stable if the subsystems:

( ) ( )[ ] ( )[ ] ( ){ } ( )x xk A A k B B k K k k+ = + − +1 ∆ ∆ (6)

( ) ( )[ ] ( ){ } ( )e ek A A k G k C k+ = + −1 ∆ (7)

had quadratic Lyapunov functions.

Although this concept had been presented by Kienitz
(1990b), in 1969 Johnson (1969) showed that the
estimated states of continuos time varying systems
could be used substituting the real states without
modify the stabilit y property of closed loop, if a
“exponential observer” were realized.

The subsystem stabili zation (6) is proved in De
Araujo Filho (1995a). Thus, the solution of the
problem is to determine the matrix G(k) appropriate
to assintotically stable subsystem (7) that represents
the dynamic error.

3. PROBLEM SOLUTION

In this paper is considered that the time variance can
be done matched or unmatched assumption and this
one is bounded.

Since a system needs to be completely observable in
order to estimate the state vector, the duality principle
may be used to determine the matrix G(k) (Ogata,

1987). Thus, if ( )[ ]{ }A A k C+ ∆ ,  is observable,

then ( )[ ]{ }A A k CT T+ ∆ ,  is controllable. In this

case, the control design and state observer design
solution are equivalents. This situation establish that
the matrix G(k) may be founded by compute

( ) ( )G k K ke
T= . It is possible since the matrix of

dynamic equation (7), ( )[ ] ( ){ }A A k G k C+ −∆ ,

may be substituted by dynamic matrix of a dual

system, that is, ( )[ ] ( ){ }A A k C K kT T

e+ −∆ .

Therefore, the procedure developed to the stabili zing
control in De Araujo Filho (1995a) may be applied to
state observer design through the duality principle.

Like in (De Araujo Filho and Kienitz, 1995b), it is
also necessary to introduce some notation to facilit ate
the understanding of the development of this new



approach.
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Considering the state equations (1) and (2) of the
dynamic system, the solution of the state observer
design can be sought by following theorem:

Theorem

Consider a linear discrete time varying system (1) and
(2). Since the system is observable, a state estimator
will assintoticaly estimate the states of the system
through the quadratic stabili zation of equation (7), if
there exist a matrix "Pe" positive definite symmetric
solution to the following modified Riccati equation:

( )1 01 1+ + +

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 − + =ε γ

γ
ε

AP HA D D P Qe
T

e
e T

e
(9)

that satisfy ( )P P E Ee
T= +− −

1
1

1 1

1
, for some positive

definite matrix P1 , some ε > 0, and considering
( ) ( )G k K ke

T= .

4. CONCLUSION

This paper is concerned with the problem of to
estimate the state vector of a dynamic system. A new
method based on guaranteed cost concept to solve
this problem is proposed. The state vector may be
estimate if there exist a solution to modified Riccati
equation.

REFERENCES

Chang, S.S.L., T.K.C. Peng, (1972) Adaptative
Guaranteed Cost Control of Systems with Uncertain
Parameters. IEEE Tran. Automat. Contr., 17, 474-
483.

De Araujo Filho, J.E. (1995a) Projeto de
controladores para sistemas discretos e variantes no
tempo utili zando o conceito de custo garantido.
Tese de Mestrado. Instituto Tecnológico de
Aeronáutica, São José dos Campos, Brasil .

De Araujo Filho, J.E. e K.H. Kienitz, (1995b)
Guaranteed Cost Stabili zation of a class of Discrete
Time Varying Systems. In: 38th Midwest
Symposium on Circuits and Systems, Rio de
Janeiro, Vol. 1, pp. 107-110.

Johnson, G. W. (1969) A Deterministic Theory of
Estimation and Control. IEEE Trans. Automat.
Contr., 6, 380-384.

Kalman, R.E., e J.E. Bertram,(1960) Control System
Analysis and Design Via the 'Second Method' of

Lyapunov - Part II : Discrete-Time Systems. J.
Basic Engineering, 82, 394-400.

Kienitz, K.H. (1990a) Stabili zation of Uncertain
Discrete Systems. PhD. Thesis. Federal Institute of
Technology, Zürich.

Kienitz, K.H. (1990b) Stabili zation of Uncertain
Linear Systems via Observer Based State Feedback.
Int. J. Systems and Sci., 23, 411-418.

Kienitz, K.H. (1995) Guaranteed Cost Stabili zation
for a Class of Uncertain Discrete-Time Systems,
Int. J. Systems and Sci., 26, 555-561.

 Ogata, K. (1987)  Discrete-Time Control Systems.
Prentice-Hall , New Jersey.

O'Reill y, J. (1983) Observers for Linear Systems.
Academic Press, London.

APPENDIX

Proof of theorem:

Using the duality principle the state equation to
dynamic error (7) can be rewritten as:

( ) ( )[ ] ( ){ } ( )e ed
T T T

dk A A k C G k k+ = + −1 ∆ (10)

Since ( ) ( ) ( ) ( )[ ]G k K k CPC CP A A k
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e e
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equation above is :
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1
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∆ (11)

The following results is obtained using H from eq.
(8).

( ) ( )[ ] ( )e ed e

T

dk H A A k k+ = +1 ∆ (12)

Lyapunov stabilit y will be satisfied if the difference
function of Lyapunov to dynamic error is negative
definite:
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Substituting equation (12) in inequation (13) results:
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or:
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Using the lemma 3.1 (De Araujo Filho, 1995a)
equation above may be rewritten as:
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Using ( ) ( )∆A k D F k E= 1 1 , this one is equivalent to:
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Using claim 3 presented in Kienitz (1995), this
yields:
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Forcing the difference ( )∆V de  to be negative,

equation (19) results:
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Hence:
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The term between brackets correspond to modified
Riccati equation presented at theorem.


