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Abstrad: In this paper a state observer method that may be used with a feedbad gain
matrix designed to quadratic stabili zation is proposed. This observer uses the guaranteed
cost concept, the second method o Lyapunov and satisfies gability condition to “one-
way” conneded systems. This method is used to a dassof discrete time varying systems
with bounded time variance State vedor will be estimated if there exist solution to
modified Riccai equation.
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1. INTRODUCTION

. . SISTEMA
The ntroller design problem using state feedbadk

has been treaed for a long time by state observer
designs (state estimator) when the state isimpaosshble,
or inappropriate, to be measured (O'Reilly, 1983.
This work want contribute with a new line of solution
showing a new method to estimate the state vedor of
a dynamic system using controll ers that make use of
the guaranteed cost concept (Chang e Peng, 1972
Kienitz, 199(1) to evaluate the system performance,
the second method d Lyapunov (Kaman e Bertram,
1960 to consider stability conditions and the stability

figure 1

condition to “one-way” conneded systems (Kienitz,
19908.

2. PROBLEM STATEMENT

Consider the global system presented at figure 1
composed by the system to be controlled, the state
observer, and the feedbadk gain:

State space euations to the system are presented
bell ow:

x(k +1) :[A +AA(k)]x(k)+[B+AB(k)]u(k) 1)
y(K) = Cx(Kk) @)
x(k +1) = [A + AA(k)]KQk) + [B + AB(k)] u(k) +

+ (K (k) - Cxfi)} @

where:



x(k) OR" isthe state vedor,

u(k) OR™ isthe control vedor,

y(k) OR® isthe output vedor,

X(k) OR" isthe estimated state vedor,
AOR™,BOR™ ,COR™

AA(k) = D, (k) E,,D, OR™, F(k) OR", E, OR™
AB(k) =D F(k)E D, OR™,Hk) OR™,E, OR™
COR™ |F(k)E|, <[g, DEOR", e

G(k) is the gain matrix to corred the estimated
vedor.

State vedor will be asdntoticdly estimated if the
error, (k) =x(k) -x{k), satisfies the condition

lime(k) =

Such way, the global state space guation is achieved
by using equation (1) and (3), and substituting the

had quadratic Lyapunov functions.

Althoughthis concept had been presented by Kienitz

(19900, in 1969 Johnson (1969 showed that the
estimated states of continuos time varying systems
could be used substituting the red states without
modify the stability property of closed loop, if a
“exponential observer” were redized.

The subsystem stabili zaion (6) is proved in De
Araujo Filho (199%). Thus, the solution of the
problem is to determine the matrix G(k) appropriate
to assntoticdly stable subsystem (7) that represents
the dynamic eror.

3. PROBLEM SOLUTION

In this paper is considered that the time variance ca
be done matched or unmatched assumption and this
oneis bounded.

state feedbadck, u(k) = -K(k)x(k).
S((k 1)5— A+ 0A(K) [B+AB k)] K(K) (k)[
s+3g o oe [+ aed]k() - Glkjc+[A + AA(K])E

4)

Applying a linea transformation, “T”, to get
[x(k+1) ek +D)]'=T[x(k+1) x(k+1)]", the
global system may be rewritten as:

D((k+1 EA+AA )] -[B+28(K)|K(K)

@(k+1)@ B 0
)

The separation principle presents that dynamic of
global system is the dynamic of system with feedback
asciated and the dynamic of estimator. Thus, the
controller design and the state estimator design can
be done independently (O'Reilly, 1983. If the system
is time varying, this principle make dso possble that
the state observer can be used together with feedbadk
gain matrix designed to quadratic stabili zaion. It is
possble if a sufficient stability condition to
subsystems “one-way” conneded (Kienitz, 1999 is
satisfied.

Subsystems with a block trianguar dynamic system
matrix are known as “one-way" subsystem.

Since the euation (5) presents upper trianguar
matrix, the system will be stable if the subsystems:

x(k+1) ={[A + aA(K)] - [B+ 2B(K)]K (K)} x(K) ©)

ek +1) ={[A +2a(K)] -

G(k)c}elk) "

[B+2B(K)]K(k) OX(

[A +2A(K)] - (k) Crre(

kD
ED D
k)G

Since asystem nedals to be completely observable in
order to estimate the state vedor, the duality principle
may be used to determine the matrix G(k) (Ogata,

1987, This, if {[A+AA(K)].C} is observable,

then {[A+aA(K)]".C"} s controliable. In this

case, the control design and state observer design
solution are equivaents. This stuation establish that
the matrix G(k) may be founded hy compute

G(k) =K (k)". It is posdble since the matrix of
dynamic eguation (7), {[A +AA(k)]—G(k)C} ,
may be substituted by dynamic matrix of a dual
system, that i, {[A +AA(k)]T—CTKe(k)} :

Therefore, the procedure developed to the stabili zing
control in De Araujo Filho (1995) may be gplied to
state ohserver design throughthe duality principle.

Like in (De Araujo Filho and Kienitz, 19950, it is
also necessary to introduce some notation to fadlit ate
the understanding of the development of this new



approadh.

H, =1 —CT(CPeCT)_lCPeE

8
Ve :)\max(ElHl—PeHeEI) E

Considering the state equations (1) and (2) of the
dynamic system, the solution of the state observer
design can be sought by foll owing theorem:

Theorem

Consider alinea discrete time varying system (1) and
(2). Since the system is observable, a state estimator
will asdgntoticady estimate the states of the system
through the quadratic stabili zaion of equation (7), if
there eist a matrix "Pg" paositive definite symmetric
solution to the following modified Riccai equation:

(1+e)AP,HAT +@e +%@31DI -P,+Q=0 (9

that satisfy P,=(P*+EJE,)”, for some pasitive
definite matrix P; , some €>0, and considering
G(k) = K (K)".

4. CONCLUSION

This paper is concerned with the problem of to
estimate the state vedor of a dynamic system. A new
method based on guaranteed cost concept to solve
this problem is proposed. The state vedor may be
estimate if there exist a solution to modified Riccdi
equation.
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APFENDIX

Proof of theorem:

Using the dudlity principle the state ejuation to
dynamic eror (7) can be rewritten as:

e,(k+1) :{[A +AA(k)] - C'G(K) T} e(k) (10

since  G(k)" = K,(k) = (CRC") "CR[A +AA(K)|"
equation aboveis:

e (k+3)=[1-c'(crc) "cr][A+ (K] " (K) (11

The following results is obtained using H from eqg.
(8).
e,(k+1) =H JA +aA(K)] e, (k) 12

Lyapunov stability will be satisfied if the difference

function of Lyapunov to dynamic eror is negative

definite:

AV, (e,) =e,(k+1) Pe,(k +1)- 13
-¢,(k) Pe,(k) <0

Substituting equation (12) in inequation (13) results:

AV, (e,) = [HE(A 4 AA)Ted] TPE[He(A + AA)Ted] -

-e,'Pe, <0
(14
or:

AV, (e,) = e;[(A +AA)H,'PH, (A +2A)" - Pe] e,
(15

Considering e]M "PNe, =e]N"PMe, , thisyields:



[AH,PHAT™ + 0
T D T T D
Ave(ed) = ed D + ZAHe PeHeAA + @d < 0 (16)
E +AAH9TF)9H6AAT - e%
Using the lemma 3.1 (De Araujo Filho, 1995a)
equation above may be rewritten as:
0 (l+g)AHPHA"+ O

0 0
AV.(e) =< o+ i@AHTPH par-p 5o =0
H € e e '€ eH

17

Using AA(k) = D,F(k) E, , this one is equivalent to:

(1+€)AHPHAT - P+

0
Q <
%ﬁl @3 FA,. (EHIPH ET)FTDTegd

(18)

Using claim 3 presented in Kienitz (1995), this
yields:

0 (1+e)APHA™+ O

&)= eZD y %d <0
O @/e + —engDI -P (19)
BO® e H

Forcing the difference AV(e,) to be negative,
equation (19) results:

0 (1+e)APHA™+ O
eTD o =-eQe
B Lpor-r gd e (20)
€
Hence:
(1+€)APHAT + E
g

:
“D @,+_§JDT—P+QH”:O (21)

The term between brackets correspond to modified
Riccati equation presented at theorem.



