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ABSTRACT 
 
The thrust vector deviations effects in the eccentricity of the spatial vehicles trajectories were 
analyzed in this paper. The trajectories were subjected to the nonlinear and stochastic keplerian 
dynamic with fuel economy. We found the algebraic relations of the effect this dynamic along the 
transfers maneuvers and in the final trajectory, through the eccentricity of the orbits and of the 
deviations provided in the thrust vector, which show nonlinear and quadratic relation for the first 
approximation. Numerically, with Monte-Carlo analysis, the results confirmed this dependence to out-
plane orbits. In the coplanar orbits, the eccentricity values do not affected. The relations show these 
effects in the final orbit eccentricity are proportional to the even powers of the causes deviations.  We 
showed the JPS2 family curves.   
 
 
INTRODUCTION 
 
Generally, we divide the perturbations in the transfers orbits in 1) natural perturbations and 2) non-
natural perturbations. These perturbations deviate the spatial vehicles from their nominal trajectories, 
causing loss of energy and optimality. The natural perturbations can occur under several forms, 
through natural forces action. The non-natural perturbations in spatial vehicles occur due the 
technologic limitations or non-idealistic model of the vehicle systems. All these perturbations  act in 
several orbital elements, causing them many deviations effects. These effects provide non-ideal 
(actual) orbits, which need direction corrections, for example. The analytical solution of the transfer 
problems under perturbations is very difficult, presenting many mathematical obstacles. In the most 
cases, the success is possible only for one problem approximated version. In this paper, we analyzed 
the non-natural perturbations effects through the orbit eccentricity of spatial vehicle under thrust  
“pitch” and “yaw” direction deviations.  
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The deviations effects over eccentricity due to several causes have been studied for many authors. 
Garfinkel (1958), Perkins (1958) and Roberson (1958) presented  important results about the drag 
atmospheric and irregularities of the Earth influences. They showed approximated expressions for the 
eccentricity variation. Others authors studied the eccentricity variations under others ways, for 
example, King-Helle et all (1960). In Jesus et all (2002a) we can found one survey on the 
perturbations orbital problems. In this paper were considered many results with forces (non-rotational 
and non-sphericity atmosphere, solar radiation pressure, infrared, etc.) influences that were studied 
over the orbital maneuvers for an artificial satellite.  In general, we can say the exact analytical 
solution for this problem with several forces (natural or non-natural) do not exist.  
 
In this paper, we present the numerical and algebraic results of the eccentricity effects due the thrust 
direction misalignments in the coplanar transfer mission.  We used the approach probabilistic for the 
uniform and gaussian function distribution deviations (causes). The results were obtained for two 
transfers: the first, a low thrust transfer between high coplanar orbits (we call it "theoretical transfer"), 
used by Biggs (1978,1979) and Prado (1989); the second, a high thrust transfer between middle 
noncoplanar orbits (the first transfer of the EUTELSAT II-F2 satellite, we call it "practical transfer") 
implemented by Kuga (1991) et alli. The simulations were done for both transfers with minimum fuel 
consumption. The "pitch" and "yaw" angles were taken as control variables such that the overall 
minimum fuel consumption defines each burn of the thrusters. The geometric development of these 
coordinates systems can be found in Jesus et all (2002b). 
 
ALGEBRAIC ANALYSIS FOR THE CAUSE EFFECT RELATIONS TO ECCENTRICITY 
 
To begin this algebraic analysis we use the relation between angular momentum and the eccentricity:  
 
 
      ( )21... eamH −= µ                                                                                                                     (1) 
 
with, 
 
H = angular momentum; 
m = satellite mass; 
a = semi-major axis; 
e = eccentricity; 
 
 
The thrust force acting over the satellite, due the propulsion system, is in the transversal and radial 
directions. Associated to this force are torque in the same directions. The time variation rate of the 
angular momentum is equal to the external torque and, in this case, only their transversal component 
is different of zero. So, the transversal torque is:  
 

      )().(cos.)( trtT
dt

tdH
t α=Γ=                                                                                                        (2) 

 
 
We can compute the integral the equation (2) to orbit without “pitch”, in the time interval [t1,t2]: 
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Equivalently, to orbit with “pitch” error, we have, 
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If we take the difference between these two last angular momentum variations, we have,  
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The integral of the right size the equation (2) can be written, after some algebraic manipulation,  
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If we apply the expectation operator through the both parts of the equation (6), considering the ergotic 
hypothesis and the fact the functions T, sine and cosine are time-deterministic, we have, 
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The expression (7) is general and, we can consider some cases of the practical interests. For example, 
the ∆α(t) non-correlated with the vector ratio r’(t). In this case, the computation of the expectation in 
(7) reduces to the computation of the trigonometric functions expectations of the “pitch” error. So, 
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We can consider the expectance of the vector ratio with “pitch” error, approximately, equal to that the 
vector ratio without error, because in the mean zero process these values turn very closed, when each 
error is inserted symmetrically and with equal occurrence probability.  With this condition, the last 
integral in (8) turns null and this expression turns function only of the known expectations to simple 
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trigonometric functions (sine and co-sine). Besides this, in this distribution process of the symmetric 
probability, the expectation of the odd functions is null. So, the second integral is null too. Therefore, 
we have,  
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for the uniform case and 
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for the gaussian case. The quadrature is, 
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The right size of the equations (10) and (11) can be computed. We have, 
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The second and third terms of the expression (12) are symmetric, because the values of the semi-
major axis and of the eccentricity to the departure orbits with “pitch” error and without it are equals in 
the initial instant. Using this fact, 
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We can expand the both terms of the expectation in binomial series, when the eccentricity values are 
between 0 and 1,  
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and 
 

      ( ) ( ) ( ) ( ) ( ) ...
8
5.

6
3.

4
1.

2
1

6
3.

4
1.

2
1.

4
1.

2
1.

2
111 42322222/12 +−−−+−−−+=− eeeee                               (17) 

 
or 

      ( ) ( ) ( ) ( ) ( ) ...
8
5.

6
3.

4
1.

2
1

6
3.

4
1.

2
1.

4
1.

2
1.

2
111 86422/12 +−−−−=− eeeee                                             (18) 

 
Taking these last results and putting them in (13), we have,  
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We used the result, 
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The expressions of the even powers differences in (18) assume the form,  
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with 
      ∆e = e’(t2) – e(t2) ≡ e’- e                                                                                                           (22) 
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To terms with order superior to two in the eccentricity, the expression (21) can be simplified (that is 
valid in the interval of the eccentricity, [0,1]), that is, the equation (21) turns, 
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If we assume that in the final instant the semi-major axis with and without “pitch” error are so closed,   
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then, the expression in (23), turns,  
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Returning to the equations (9) and (10), we obtain,  
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for the uniform case and, 
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for the gaussian case.  
 
The curve form that we look for can be found, to our approach, using the values of the semi-major 
axis expectations computed by Jesus (1999) in the equations (28) and (29). After this, we have to the 
non-correlated case,   
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for the uniform case and,  
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for the gaussian case.  
 
with, 
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The expressions (30) and (31) show the curve form. The coefficients gi’s depend of the quadratures 
and of constants values. 
 
 
THE JPS2 CURVES OF NONIMPULSIVE AND NONCOPLANAR ORBITAL MANEUVERS. 
NUMERICAL RESULTS - ECCENTRICITY 
 
 
The expressions (30) and (31) show the nonlinear relation between the expectation of the eccentricity 
deviation and the maximum “pitch” deviation. These results were obtained only for the “practical” 
transfer orbit, that is, for the noncoplanar orbit of the EUTELSAT II-F2 satellite realized with change 
of inclination. For the “theoretical” orbit, coplanar, the values eccentricity keep constants with “pitch” 
deviation (Jesus, 1999). The numerical results confirm the curves JPS2 forms, previewed in (30) and 
(31). The Figures 1 show these results. We simulated (Monte-Carlo) 1000 ensembles of the transfer 
trajectories for the both kind of deviations (uniform -U, gaussian - G), for the maneuver "practical" - 
P, for the random bias (S) and white noise (O) deviations. 
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Fig. 1 – Mean Eccentricity vs. DES2, Practical Transfer Orbit 

 

 

This graphic shows, clearly, the nonlinear dependence between the mean eccentricity values and the 
“pitch” deviations, during the transfers maneuvers. This fact, do not depends of the kind of deviations 
distribution or of their dynamic, if systematic deviations or if operational deviations. Qualitatively the 
results are the same for the transfer phenomena, that is, the JPS2 curves present the equivalent form. 

 

CONCLUSIONS 

 
We studied the orbital transfer maneuvers of the satellite under thrust direction “pitch” deviations. We 
found the cause/effect relation between the expectation eccentricity and the “pitch” deviations for the 
“practical” transfer orbit, those noncoplanar orbits. In the coplanar orbits, the “theoretical” orbits, the 
eccentricity values do not affected. This relation showed one composition of terms of even powers 
deviations order. The first term presented one quadratic relation, exactly in the deviation region of the 
practical missions interests. The results of the numerical simulation (Monte-Carlo) confirmed the 
algebraic relations found in this paper. The JPS2 curves found presents the contributions of the all the 
even powers terms of the “pitch” deviations. The out-plane effects in the “practical” transfers orbits, 
affect in the trajectories forms, because depend of the energies changes during the noncoplanar 
dynamic along the orbit transfer. We conclude that occur one dilatation of the elliptical orbits. 
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