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This paper presents a methodology to study the role played by nonattracting chaotic sets called
chaotic saddles in chaotic transitions of high-dimensional dynamical systems. Our methodology is
applied to the Kuramoto–Sivashinsky equation, a reaction–diffusion partial differential equation.
The paper describes a novel technique that uses the stable manifold of a chaotic saddle to
characterize the homoclinic tangency responsible for an interior crisis, a chaotic transition that
results in the enlargement of a chaotic attractor. The numerical techniques explained here are
important to improve the understanding of the connection between low-dimensional chaotic systems
and spatiotemporal systems which exhibit temporal chaos and spatial coherence. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1759297#

In the past decades chaos theory has been revealed as a
powerful way to explain the physics of low-dimensional
dynamical systems, that is, dynamical systems with a
small number of state variables. However, most problems
of practical interest in physics and engineering are de-
scribed by partial differential equations „PDEs…, and it is
still unclear in which situations the physical mechanisms
responsible for the onset of chaos in low-dimensional sys-
tems are applicable to systems described by PDEs. Sev-
eral authors have tried to develop a dynamical systems
theory for high-dimensional dynamical systems, fre-
quently described by sets of coupled ordinary differential
equations obtained as approximations to the original
PDEs.1–7 The simplest approach consists in first ‘‘bor-
rowing’’ the tools developed for low-dimensional dynami-
cal systems and applying them to spatially extended sys-
tems in regimes that display characteristics of low-
dimensional chaos. Then, it is possible to develop the
tools to be used in more complex regimes. In this paper
we try to improve the understanding of the connection
between low-dimensional chaotic systems and a certain
class of spatiotemporal systems: the one that exhibits
temporal chaos and spatial coherence. We focus on the
development of a methodology to study the role played by
nonattracting chaotic sets called chaotic saddles in cha-
otic transitions of high-dimensional dynamical systems.

I. INTRODUCTION

Chaotic saddles are responsible for important nonlinear
phenomena, such as chaotic transients,8–11 chaotic
scattering,12,13 and fractal basin boundaries.14–16 It has also
been shown that chaotic saddles have crucial importance in
chaotic transitions known as interior crises in
low-dimensional17–20and high-dimensional21 dynamical sys-

tems. An interior crisis is a sudden and dramatic increase in
the size of a chaotic attractor as a control parameter of the
system passes through a critical value.8,9,22,23We describe a
novel technique that uses the numerically computed stable
manifold of a chaotic saddle to characterize the homoclinic
tangency responsible for an interior crisis in a PDE.

For this study we have chosen the Kuramoto–
Sivashinsky~KS! equation as our model equation. The KS
equation is one of the most widely studied nonlinear partial
differential equations to model reaction–diffusion systems. It
was named after its derivation as a phase equation for the
complex Ginzburg–Landau equation, presented by Kura-
moto and Tsuzuki,24 and as a model for hydrodynamical in-
stability in laminar flame fronts, presented by Sivashinsky.25

However, the KS equation had been previously obtained as a
model for the nonlinear saturation of drift waves associated
with the oscillation of plasma particles trapped in magnetic
wells created by the inhomogeneous magnetic field of a
tokamak.26 Since then, the KS equation has been used to
study Rayleigh–Be´nard convection and flow of a viscous
fluid down a vertical plane,27 nonlinear saturation of
Rayleigh–Taylor instability in thin films,28 and the dynamics
of bright spots formed by self-focusing of a laser beam.29 We
choose a regime in which the dynamics of the KS equation is
chaotic in time, but remains coherent in space. This enables
us to develop numerical schemes for analyzing high-
dimensional dynamical systems. It is known that for certain
choices of the control parameters, the KS dynamics can be-
come chaotic in both space and time. In such regimes, very
different bifurcations and nonlinear mechanisms may appear.
We believe the numerical investigation conducted in this pa-
per can be a guide to extend the study of the KS equation to
the spatiotemporal chaos regime.

This paper develops as follows. In Sec. II the KS equa-
tion is numerically solved using the Galerkin method. In Sec.
III two algorithms for finding chaotic saddles are described.
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In Sec. IV we study the presence of chaotic saddles in the KS
equation. In Sec. V we present our method to characterize a
high-dimensional homoclinic tangency using the stable
manifold of a chaotic saddle. Section VI describes specific
details regarding the numerical procedures for finding cha-
otic saddles in the KS equation. The conclusions and final
commentaries are given in Sec. VII.

II. THE KURAMOTO–SIVASHINSKY EQUATION

The Kuramoto–Sivashinsky equation can be written
as5,21,23,26
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wheren is a ‘‘viscosity’’ damping parameter and we assume
that u(x,t) is subject to periodic boundary conditions
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To obtain the numerical solution of Eq.~1! we use the
Galerkin method,30 by applying a Fourier decomposition for
the functionu(x,t)
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After solving the derivatives in Eq.~4!, one obtains
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Next, multiply Eq. ~5! by e2 i lx , with l 52`, . . . ,̀ ,
and integrate in the spatial domain
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Each integral of the exponential functions in Eq.~6! van-
ishes except when the exponent is zero. The three first expo-
nents are zero whenk5 l . For the nonlinear term the expo-
nent is null whenk5 l 2m. After solving the integrals, Eq.
~6! becomes

ḃk5~k22nk4!bk2 ik (
m52N

N

bmbk2m , k52N, . . . ,N,

~7!

whereN is the truncation order.
The coefficientsbk in Eq. ~7! are complex. We can sim-

plify our analysis by restricting to the subspace of odd solu-
tions, u(x,t)52u(2x,t). It is possible to prove that if an
initial condition u(x,0) is an odd function, the solution of
Eq. ~1! is odd for all time2

u~x,t !52u~2x,t !, ;x,t. ~8!

The Fourier transform of an odd function has purely
imaginary coefficients, so we can represent odd functions by
assuming thatbk(t) are purely imaginary, setting

bk52 1
2 iak , ~9!

whereak are real numbers. After substituting Eq.~9! into Eq.
~7!, we obtain
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Equation ~10! contains unnecessary operations. Since
u(x,t) is real,2 iak5 ia2k , and it is not necessary to com-
pute the modes with negativek. Besides that,ak50 for uku
.N, and some operations in the nonlinear term can be
dropped. Thus Eq.~10! can be written in the form
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with k51, . . . ,N.

III. ALGORITHMS

In this section two algorithms for detecting chaotic
saddles are briefly reviewed: the sprinkler and the proper
interior maximum~PIM! triple methods. The algorithms are
described for discrete-time maps. Thus, for differential equa-
tions the trajectories mentioned in the following sections re-
fer to the iterations of a Poincare´ map.31

A. The sprinkler method to find chaotic saddles and
their invariant manifolds

Associated to a chaotic saddle, there are stable and un-
stable manifolds. The stable manifold is the set of points that
converge to the chaotic saddle in forward time dynamics; the
unstable manifold is the set of points that converge to the
chaotic saddle in the time reversed dynamics. The chaotic
saddle lies on the intersection of its stable and unstable
manifolds,32,33 and contains an infinite number of unstable
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periodic orbits~UPOs!. In this section we describe a simple
routine to obtain an approximation to a chaotic saddle and its
stable and unstable manifolds.

Consider a system with an attractorA and a regionR in
the phase space containing a chaotic saddleL and no attrac-
tor ~a so-called restraining region!. The trajectories of all
initial conditions inR will eventually leaveR and converge
to attractorA, except for initial conditions lying on the stable
manifold of L, which is a set of measure zero. Initial condi-
tions close to the stable manifold are first attracted toL and
stay close to its neighborhood for some time, before they are
repelled, following its unstable manifold. The closer an ini-
tial condition is to the stable manifold ofL, the longer its
transient time before leavingR. These facts lead to the sprin-
kler algorithm34,35 to find chaotic saddles and their mani-
folds. Define a grid withN0 points uniformly distributed in
R. Obtain the exit time of each point, that is, the time it takes
to leaveR. Those initial conditions with an exit time larger
than some specified timetc constitute an approximation to
the stable manifold ofL, and their last iterations before leav-
ing R approximate the unstable manifold. The points at some
time t̄ 5jtc are the approximation to the chaotic saddle. The
values oftc and t̄ must be chosen after some trial and error,
but usually tc must be large compared to the average exit
time t and j51/2 seems to work fine in most systems, ac-
cording to Hsuet al.35 Let Nt be the number of trajectories
that are still in the restraining region aftert iterates.Nt typi-
cally decreases exponentially with timet at a rate 1/t10,35

Nt5N0 exp~2t/t!. ~12!

B. The PIM triple method to find chaotic saddles

In the sprinkler algorithm, a chaotic saddleL is approxi-
mated by a series of fragments of different trajectories. The
PIM triple method, first presented by Nusse and Yorke,32

finds a single trajectory which stays close to the chaotic
saddle for an arbitrarily long time.

The PIM triple routine receives as an input a pair of
pointsa andb such that the line segment@a,b# intersects or
‘‘straddles’’ the stable manifold ofL. In this situation, there
must, necessarily, be a pointc betweena and b which is
closer to the stable manifold ofL than a and b. The exit
time t is infinite for a point on the chaotic saddle or on its
stable manifold, and the exit time tends to infinity as closer is
the point to the stable manifold ofL. Thus, the exit time of
c, t(c), is strictly larger thant(a) and t(b). The triple
(a,c,b) is called a proper interior maximum triple, or a PIM
triple.

An initial PIM triple can be found by selecting a large
interval @a,b# in the restraining regionR. Given pointsa
and b, the algorithm tries to find the pointc of larger exit
time thana and b inside @a,b#. The PIM triple routine di-
vides the interval@a,b# into N subintervals with the same
length, delimited by a grid of points along@a,b#. After that,
the algorithm obtains the exit time of all the grid points and
selects three, not necessarily consecutive, points forming a
PIM triple (a1 ,c1 ,b1), by checking if the middle pointc1

has exit time larger thana1 andb1 . Usually, forN not too
small there is one or more PIM triples in@a,b#. Next, an«

refinement of the triple (a1 ,c1 ,b1) is created. An« refine-
ment of a triple (a,c,b) is a finite set of pointsgi in @a,b#
such thata5g0,g1, . . . ,gN5b, ugk2gk11u<e•ua2bu,
and c5gk for somek, 1<k<N. Here, ua2bu denotes the
distance betweena and b. The next step is to find a new
triple (a2 ,c2 ,b2) in the « refinement of (a1 ,c1 ,b1). Then,
an « refinement of this triple is generated and a new triple
(a3 ,c3 ,b3) is selected. This procedure is repeated obtaining
successively smaller PIM triples until the Euclidean length
of a PIM triple (an ,cn ,bn) is less than some specified value
d, which defines the precision of the approximation. LetI 0

be the interval@an ,bn#. Then, iterate the intervalI 0 , that is,
iterate pointsan andbn once using the Poincare´ map, obtain-
ing a new intervalI 1 . If the length ofI 1 is less thand, iterate
I 1 , obtainingI 2 . Keep iteratingI n until its length is greater
than d. In that case, refineI n using the PIM triple routine,
obtaining a new intervalI<d. The program proceeds iterat-
ing I and calling the PIM triple routine every time its length
exceedsd. After each iteration one point fromI is plotted,
generating a single trajectory called the straddle trajectory,
which stays at a distance of the order ofd from the true
chaotic saddle.

The PIM triple method is usually more accurate than the
sprinkler method for systems with short transients, as in our
case. Thus, in the following sections we use the PIM triple
algorithm to find the chaotic saddles, and the sprinkler algo-
rithm is used to estimate their stable manifolds. We always
compare the chaotic saddles obtained with both algorithms in
order to check our numerical results.

IV. NONLINEAR DYNAMICS ANALYSIS

The dynamics of the system described by Eq.~11! can be
analyzed on a Poincare´ section defined bya150. A trajec-
tory representing the flow of Eq.~11! in a phase space de-
fined by the Fourier modesak , can intersect this Poincare´
section in two ways: whenȧ1.0 ~from ‘‘left’’ to ‘‘right’’ ! or
when ȧ1,0 ~from ‘‘right’’ to ‘‘left’’ !. We adopt a Poincare´
mapP defined as the (N21) dimensional hyperplane given
by a150, with ȧ1.0, so that a Poincare´ point is plotted
every time the flow of Eq.~11! crosses the hyperplanea1

50 from ‘‘left’’ to ‘‘right.’’
We follow Refs. 5 and 23 and solve Eq.~11! with N

516, since for our choices of the control parametern the
dynamics is qualitatively the same forN.16. A typical spa-
tiotemporal pattern ofu(x,t), recovered from the values of
bk using Eqs.~3! and ~9!, is plotted in Fig. 1. Note that the
dynamics is chaotic in time, but spatially coherent structures
are preserved.

For certain values ofn, the trajectories of random initial
conditions wander chaotically in a certain region of the phase
space for some transient time, before they converge to an
attractor. During this chaotic transient, the trajectories are in
the vicinity of a chaotic saddle. Figure 2~a! shows the varia-
tion of a chaotic saddle~gray! as a function ofn, superim-
posed by the bifurcation diagram of the attractor~black!. For
each value ofn, we use the PIM triple algorithm to find 250
Poincare´ points of a straddle trajectory at a distanced
'1026 from the true chaotic saddle, and plot the Fourier
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componenta6 . The bifurcation diagram of the attractor was
generated by integrating Eq.~11! and plotting 250 Poincare´
points for each value ofn, after dropping the first 100 itera-
tions.

The saddle-node bifurcation~SNB! arrow in Fig. 2~a!
points to a saddle-node bifurcation that occurs atn5nSNB

;0.029 924 98 and marks the beginning of a periodic win-
dow. To the right ofnSNB, initial conditions are attracted to a
chaotic attractor. In the saddle-node bifurcation, a pair of
period-3~p-3! stable/unstable periodic orbits is created. Asn
is decreased to the left ofnSNB, the stable p-3 attractor~solid
lines! undergoes a series of period-doubling bifurcations,
leading to a chaotic attractor localized in three separate
bands in the bifurcation diagram. The dashed lines in Fig.
2~a! denote the Poincare´ points of the p-3 unstable periodic
orbit created atnSNB, which, in the Poincare´ map, consists of
three saddle points with their associated stable and unstable
manifolds. As reported by Chianet al.,23 this UPO, hereafter
called the mediating unstable periodic orbit~MPO!, is re-
sponsible for the onset of interior crisis~IC! at n5n IC

;0.029 920 21 and is found using the Newton method.5,36At
n IC , the MPO collides with the three-band chaotic attractor.
After the collision the chaotic attractor is suddenly enlarged.
We call the region occupied by the attractor throughout the
periodic window, the band region (B), and the region occu-
pied by the chaotic saddle, the surrounding region (S).17–19

Since the chaotic saddle shown in Fig. 2~a! lies in the sur-
rounding region, it is called the surrounding chaotic saddle
~SCS!. It has been shown that for dissipative dynamical sys-
tems described by discrete maps, the stable manifold of
MPO determines the boundary between the band region and
the surrounding region.17–19

After colliding with the mediating unstable periodic or-
bit, the band chaotic attractor loses its stability and is con-
verted into a chaotic saddle localized in theB region, im-
mersed in the abruptly enlarged chaotic attractor. In contrast
with the surrounding chaotic saddle, this newly created cha-
otic saddle is called band chaotic saddle~BCS!. In Fig. 2~b!
we plot part of the same bifurcation diagram of Fig. 2~a!
prior to IC (n.n IC), and after IC (n,n IC) we plot the varia-
tion of the newly created BCS.

It is important to stress that, although in Fig. 2~a! we plot
the surrounding chaotic saddle only inside the periodic win-
dow ~between SNB and IC!, it is actually present in the
whole bifurcation diagram. Forn,n IC andn.nSNB the cha-
otic saddle is embedded in the chaotic attractor. As an ex-
ample, Fig. 3 shows a three-dimensional projection (a1 , a10,
a16) of a chaotic saddle defined in the 15-dimensional Poin-
caréhyperplane atn50.029 925.nSNB, to the right of the
saddle-node bifurcation in Fig. 2~a!. This chaotic saddle is a
continuation of the surrounding chaotic saddle shown in Fig.
2~a!. The chaotic saddle is not a continuous line. It has many
gaps, most of which are not visible in Fig. 3 due to their
small size.

For the range of the damping parametern used in Fig. 2
and the spatial system sizeL52p the KS equation presents
some features of low-dimensional dynamical systems. In the
chaotic regime the system exhibits only one positive
Lyapunov exponent,31 which means that there is only one

FIG. 1. The spatiotemporal pattern ofu(x,t) at n50.029 920 06. The sys-
tem dynamics is chaotic in time but coherent in space.

FIG. 2. ~a! Variation of a6 for the chaotic saddle~gray! as a function ofn,
superimposed by the bifurcation diagram of the attractor~black! in a p-3
periodic window. IC denotes interior crisis and SNB denotes saddle-node
bifurcation. The dashed lines denote the p-3 mediating unstable periodic
orbit. ~b! Same as~a!, but depicting the conversion of the three-band chaotic
attractor into a band chaotic saddle after~to the left of! IC.
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expanding direction. An estimation of the fractal dimension
of the chaotic attractor atn50.029 920 06 using the Kaplan–
Yorke conjecture37 results in the dimensionD'2.08, which
implies that in the Poincare´ section the chaotic attractor is a
set of dimensionDp5D21'1.08, and hence the attractor is
a low-dimensional set embedded in a high-dimensional
phase space. This can be seen in Fig. 4, which shows a
three-dimensional projection (a1 , a10, a16) of the Poincare´
points of the enlarged chaotic attractor@~ECA! light line#
after crisis (n50.029 920 06), superimposed by the three-
band chaotic attractor@~BCA! dark lines# at crisis (n
50.029 920 21). Note the similarity of the enlarged chaotic
attractor with the surrounding chaotic saddle shown in Fig. 3.

The interior crisis occurs when the band chaotic attractor
collides with the mediating unstable periodic orbit and with
its stable manifold. In Sec. V we show that a homoclinic
tangency occurs at this crisis, i.e., the tangency between the
stable and unstable manifolds of MPO. After the crisis, it is

still possible to determine theB and S regions, which are
separated by the stable manifold of MPO. Figure 5 shows a
two-dimensional projection (a5 ,a6) of the chaotic sets for
n50.029 920 06, after the crisis, around the upper branch of
the chaotic attractor shown in Fig. 4. Figure 5~a! shows the
chaotic attractor~CA! and Fig. 5~b! shows the corresponding
B ~light lines! and S ~dark lines! chaotic saddles. BCS is
localized in a region of the phase space previously occupied
by the precrisis band chaotic attractor. SCS is the continua-
tion of the precrisis surrounding chaotic saddle. It can be
seen from Fig. 5 that the postcrisisB andS chaotic saddles
are subsets of the enlarged chaotic attractor. This decompo-
sition of the postcrisis chaotic attractor into two chaotic
saddles is important in the study19 and control38 of crisis-
induced intermittency.

V. VISUALIZING A HIGH-DIMENSIONAL HOMOCLINIC
TANGENCY

In this section we show that at the interior crisis of Fig.
2 the chaotic attractor is tangent to the stable manifold of the
surrounding chaotic saddle. We elaborate a method to visu-
alize this tangency in a high-dimensional phase space. Using
a suitably chosen grid of initial conditions for the sprinkler

FIG. 3. Three-dimensional projection (a1 , a10 , a16) of the chaotic saddle
defined in the 15-dimensional Poincare´ hyperplane just before the saddle-
node bifurcation, atn50.029 925.

FIG. 4. Three-dimensional projection (a1 , a10 , a16) of the ECA~light line!
defined in the 15-dimensional Poincare´ hyperplane after crisis atn
50.029 920 06, superimposed by the three-BCA~dark lines! at crisis (n
50.029 920 21).

FIG. 5. ~a! Upper branch of the CA after the interior crisis, atn
50.029 920 06. The dashed lines indicate segments of the SMs of the me-
diating unstable periodic orbit~cross!; ~b! the BCS~light lines! and the SCS
~dark lines! that compose the chaotic attractor shown in~a!.
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algorithm, we plot a two-dimensional projection of the stable
manifold of the surrounding chaotic saddle in the vicinity of
the chaotic attractor. We argue that this method can be used
to show a homoclinic tangency between the stable and un-
stable manifolds of MPO.21

In a previous work, Lai and Winslow10 used the sprin-
kler method to find the stable manifolds of a chaotic saddle
in a high-dimensional phase space of a coupled-map lattice.
They used a grid of initial conditions generated by varying
the values of two of the state variables while keeping all the
other state variables with constant values. This approach is
not suited for our application, since we are interested in
showing the tangency of the stable manifold of SCS with the
chaotic attractor. It is difficult to visualize such a tangency in
a high-dimensional phase space, and all the 15 coordinates of
each grid point must be carefully chosen. Figure 6 illustrates
the process used to create the grid around the upper branch
of the band chaotic attractor shown in Fig. 4. First, a set of
four points (A, B, C and D) is chosen from the chaotic
saddle~gray lines! surrounding the chaotic attractor~black
line!. These points form a sample from which the grid is
interpolated. Figure 6~a! shows a grid of points inside a poly-
gon defined by the verticesABCD. The line segment@A,B#

is divided into n subintervals delimited by pointspi , i
51, . . . ,n11, and the line segment@C,D# is divided in n
subintervals delimited by pointsqi , i 51, . . . ,n11. After
that, each line segment defined by a pair of points (pi ,qi) is
divided in m subintervals. Linear extrapolation can be used
to add points outside the original polygon, as exemplified in
Fig. 6~b!. For instance, to add ten points above and ten below
the segment@A,B#, divided inn subintervals, one can use an
expression like

pi5B1 i ~A2B!/n,

i 5210,29, . . . ,n110. ~13!

Following this procedure, a grid is built close to one of

FIG. 6. Grid construction using four points of the chaotic saddle~gray!
around the upper branch of the chaotic attractor~black line! at n IC

50.029 920 21.~a! The grid points in the line segmentAB are found by
linear interpolation. The same is done to find the grid points in segments
CD, AC, andBD. The grid points inside the polygonABCD are found by
linear interpolation of points in the edges.~b! Points outside the polygon
ABCD are found by linear extrapolation.

FIG. 7. Three different viewpoints of a three-dimensional projection (a2 ,
a3 , a4), of the grid along with part of the surrounding chaotic saddle~dark
lines! at n IC50.029 920 21. The grid is close to every point in this part of
the chaotic saddle.
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FIG. 8. Two viewpoints of projections (a5 , a6 , a7) ~a!, ~b! and (a8 , a9 , a10) ~c!, ~d! of the grid with part of the surrounding chaotic saddle~dark lines! at
n IC50.029 920 21.

FIG. 9. Two viewpoints of projections (a11 , a12 , a13) ~a!, ~b! and (a14 , a15 , a16) ~c!, ~d! of the grid with part of the surrounding chaotic saddle~dark lines!
at n IC50.029 920 21.
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the branches of the chaotic attractor. This grid will be used to
show a cross section of the stable manifold of SCS in the 15
dimensional~15D! Poincare´ phase space.

In Fig. 7 part of SCS around the upper branch of the
chaotic attractor atn IC is plotted along with the grid gener-
ated. The three different views of this three dimensional~3D!
projection (a2 , a3 , a4) suggest that the grid is approxi-
mately tangent to each point on this part of the chaotic set. In
order to verify if the same happens in the other coordinates
of the phase space, we plot a series of different 3D projec-
tions involving all the Fourier modes. These projections,
shown in Figs. 8 and 9, reveal that the linear interpolation
method is able to define an appropriate grid to study the
dynamics in the vicinity of these chaotic sets.

To show a tangency between the chaotic attractor and
stable manifold of SCS, to be calculated on the grid of points
with the sprinkler algorithm, the grid points must ‘‘touch’’ all
the points on the chaotic attractor. In order to estimate the
precision of our method for this problem, we compute the
average distance between points on the attractor and the grid.
The distance can be computed as follows:

~1! Randomly choose a pointp from the upper branch of the
chaotic attractor;

~2! search for the grid pointq closest ~with the smallest
Euclidean distance! to p;

~3! save the distanceD i5ip2qi ;
~4! repeat steps 1–3,N times;
~5! obtain the average distance between points on the attrac-

tor and the grid as

D5
1

N(
i51

N

Di .

For the grid in Fig. 11~b!, which has 575 333 points, we find
D54.2031025 for N5500, which can be seen as an esti-
mate for the precision of the grid. The use of finer grids
results in a smallerD.

Once the grid is defined, the sprinkler method can be
readily applied. In order to set the value oftc we first com-
pute the average exit timet. GivenN0 initial conditions we
computeNt , the number of trajectories that are still in the
restraining region aftert iterates~the restraining region for
this problem is discussed in Sec. VI!. Figure 10 shows a
graph of logNt versust at n IC , whereN0510 000 different
initial conditions were used. The graph can be fitted with a
straight line of slopeg523.593102261.4531024, which
gives an average exit timet521/g'27.9 @see Eq.~12!#.
Based on this value we choosetc545, since it should be
large compared tot. Actually, the numerical results are not
very sensitive totc and different values give similar results,
as long as they are not too small.

We proceed by obtaining the exit time for each grid
point. Points with exit time larger thantc are considered as
part of the stable manifold of SCS. In Fig. 11 we plot the
upper branch of the CA~light line! with the surrounding
chaotic saddle SCS~dark lines! and its stable manifold~dots
in the background! for: ~a! n50.029 9211~before crisis! and
~b! n50.029 920 21~at crisis!. The upper Poincare´ point of
the mediating orbit is represented by the cross. Note that

FIG. 10. Exponential decay ofNt , the number of trajectories inside the
restraining region at timet, as a function oft. The inverse of the slope of
the fitted line gives the average exit timet'27.9.

FIG. 11. Plots of the upper branch of the CA~light line!, the SCS~dark
lines! and its stable manifolds~dots in the background!: ~a! before the inte-
rior crisis, at n50.029 9211; and ~b! at the interior crisis, n
50.029 920 21. The cross denotes one of the Poincare´ points of the p-3
mediating unstable periodic orbit. The dashed lines represent segments of
the boundary between the band region and the surrounding region, given by
the SMs of the mediating unstable periodic orbit.
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SCS has a large gap between the two dashed lines, and many
other smaller gaps, or discontinuities. Its gaps are due to the
horizontal white spaces in the background, which reflect the
fractal structure of the stable manifold of SCS. The fact that
SCS always intersects its stable manifold, and its gaps al-
ways coincide with the white spaces in the background indi-
cate that the grid was well chosen. Figure 11~b! reveals that

at crisis theS chaotic saddle and the chaotic attractor collide.
The collision takes place at the mediating orbit, which be-
longs to SCS. Likewise, the chaotic attractor collides with
the stable manifold of SCS.

Recall that the stable manifold of MPO determines the
boundary between the band region and the surrounding re-
gion. In our system, the mediating orbit has 14 stable eigen-

FIG. 12. Four different two-dimensional projections showing the homoclinic tangency between one of the three branches of the CA and the SM~dashed lines!
of the mediating unstable periodic orbit~cross! at the interior crisis,n IC50.029 920 21.

FIG. 13. Four different two-dimensional projections showing the homoclinic tangency between one of the three branches of the CA and the SM~dashed lines!
of the mediating unstable periodic orbit~cross! at the interior crisis,n IC50.029 920 21.
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values~with absolute values less than one!, implying that the
invariant stable manifold of the mediating orbit has dimen-
sion 14. The numerical computation of high-dimensional in-
variant stable manifolds of an unstable periodic orbit is a
highly complicated task. Recent works have presented the
computation of two-dimensional invariant manifolds.39–42

The computation of stable manifolds of much higher dimen-
sions, as in our case, is still a challenging task. However, we
can approximate one-dimensional projections of segments of
the stable manifold~SM! of the mediating orbit close to the
tangency points using the stable manifold of SCS, to deter-
mine the local boundary between regionsB andS, as shown
by the dashed lines in Fig. 11. This can be done since the
stable manifold of SCS and the stable manifold of any UPO
on SCS are practically indistinguishable.20,33 Using this
method we reveal in Fig. 11~b! the tangency between the
chaotic attractor and the stable manifold of MPO. At crisis,
the chaotic attractor is the closure of one branch of the un-
stable manifold of MPO.23 Thus, we have demonstrated in
Fig. 11~b! the homoclinic tangency between the stable and
unstable manifolds of MPO. Although Fig. 11~b! shows only
a two-dimensional projection (a5 , a6) of the phase space,
the collision can be observed in projections onto any choice
of Fourier modes, as seen in Figs. 12 and 13.

VI. DEFINING THE RESTRAINING REGION

Both the sprinkler and the PIM triple algorithms, used in
the previous sections, require the definition of a restraining
region, which is a region of the phase space which contains a
chaotic saddle and no attractor. The definition of such re-
gions can be a complex task in a high-dimensional phase
space. We consider different strategies for different situa-
tions.

For the values ofn for which the attractor is a periodic
orbit the restraining region can be defined as the phase space
minus a set of small spheres around the periodic points of the
attractor. In order to increase computation speed it is enough
to cover just one of the periodic points. The PIM triple algo-
rithm looks for a trajectory that stays forever outside the
sphere, that is, at an Euclidean distance larger than a speci-
fied radius from the periodic point.

Inside the periodic window, after the sequence of period-
doubling bifurcations, the attractor becomes chaotic and is
localized in three separate branches on the Poincare´ plane.
To define the restraining region it is necessary to cover one
of the branches without covering parts of the surrounding
chaotic saddle. Figure 14 shows the situation at the interior
crisis pointn IC , when the CA~black lines! touches the sur-
rounding chaotic saddle SCS~gray lines!. For this case, it is
possible to isolate one of the branches of the attractor by
covering it with a 15D box whose projection onto the plane
(a5 , a6) is shown in Fig. 14~b!, an enlargement of the rect-
angular region in Fig. 14~a!. The upper-right corner of the
box is defined by the coordinates of the mediating unstable
periodic orbit. The lower-left corner can be obtained from
the chaotic attractor. A long chaotic trajectory is generated on
the attractor and the point with the lowesta5 or a6 value is
taken as the lower-left corner of the rectangle. Projections

onto different planes show similar pictures. The surrounding
chaotic saddle is found as a straddle trajectory that never
enters the box. The box created with this simple method
contains this branch of CA due to its particular shape. Dif-
ferent branches could require boxes constructed in different
ways. Alternatively, other types of covers can be used, such
as sets of spheres, with the care that these spheres do not
cover parts of the surrounding region. We have tested several
forms of restraining regions, all of which produced similar
chaotic saddles. In our particular case, we find that the sim-
pler restraining region can be defined by considering only the
a5 axis, as in Fig. 14~c!. Since the two vertical dashed lines
in Fig. 14~c! do not intersect other parts of the chaotic sets,
they can be used to identify numerically the points falling
into this branch of the chaotic attractor.

After the interior crisis it is not easy to identify the band
and surrounding regions. However, forn,n IC , but still close
to the crisis point IC, BCS is localized in three separate

FIG. 14. ~a! SCS~gray! and CA~black! at crisisn IC ; ~b! enlargement of the
rectangular region in~a! showing the definition of the restraining region
with a box covering one of the branches of CA;~c! simpler restraining
region, using onlya5 to determine if a point is in the band region or not.
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regions of the phase space previously occupied by the pre-
crisis band chaotic attractor. BCS can be found by using the
PIM triple algorithm to determine a chaotic straddle trajec-
tory that always, at every third iteration~according to the
number of bands of theB region!, returns to a given restrain-
ing regionR. This regionR is defined slightly larger than
one of the precrisis bands. Such a region is depicted in Fig.
15~a!, where the position of MPO~cross! can still be used to
accurately determine the right side ofR. The left side is
somewhat to the left of the band region at crisis@left vertical
line in Fig. 14~c!#. The left side ofR does not have to be
precisely determined to find BCS. Once BCS is found, it can
be used to find the best position for the left side ofR, in
order to find SCS as a PIM triple orbit that never enters the
regionR, which is occupied by BCS@Fig. 15~b!#.

VII. CONCLUSIONS

We have studied the nonlinear dynamics of chaotic
saddles in a high-dimensional dynamical system exemplified
by the Kuramoto–Sivashinsky equation. We presented a
method that uses simple linear interpolations between points
on the chaotic sets to choose an appropriate grid to visualize
a homoclinic tangency in a high-dimensional phase space.
Since the grid must be tangent to every point on the chaotic
attractor in a certain region of interest, the direct applicabil-
ity of this method is still limited to cases in which the invari-
ant chaotic sets do not have many expanding directions.
More research is needed in order to extend this technique for

other situations. Nevertheless, many systems exhibit low-
dimensional chaotic attractors in high-dimensional phase
spaces, with sequences of bifurcations and crises similar to
the cases discussed in this paper, and it should be possible to
apply the techniques explained here in such systems. Ex-
amples of numerical analysis of partial differential equations
which exhibit low-dimensional chaos include a model for the
nonlinear evolution of low-frequency magnetohydrodynamic
oscillations in plasmas,43 a generic model for the propagation
of nonlinear waves in forced, spatially extended medium,44

and a model for semiconductor devices.45 Experimental ex-
amples include a magnetoelastic ribbon,46 electronic
circuits,47 a dripping faucet,48 experiments with air
bubbles,49 and lasers.50
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