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This paper presents a methodology to study the role played by nonattracting chaotic sets called
chaotic saddles in chaotic transitions of high-dimensional dynamical systems. Our methodology is
applied to the Kuramoto—Sivashinsky equation, a reaction—diffusion partial differential equation.
The paper describes a novel technique that uses the stable manifold of a chaotic saddle to
characterize the homoclinic tangency responsible for an interior crisis, a chaotic transition that

results in the enlargement of a chaotic attractor.

The numerical techniques explained here are

important to improve the understanding of the connection between low-dimensional chaotic systems
and spatiotemporal systems which exhibit temporal chaos and spatial coherer&B4@merican

Institute of Physics.[DOI: 10.1063/1.1759297

In the past decades chaos theory has been revealed as atems. An interior crisis is a sudden and dramatic increase in

powerful way to explain the physics of low-dimensional
dynamical systems, that is, dynamical systems with a
small number of state variables. However, most problems
of practical interest in physics and engineering are de-
scribed by partial differential equations (PDEs), and it is
still unclear in which situations the physical mechanisms
responsible for the onset of chaos in low-dimensional sys-
tems are applicable to systems described by PDEs. Sev-
eral authors have tried to develop a dynamical systems
theory for high-dimensional dynamical systems, fre-
quently described by sets of coupled ordinary differential
equations obtained as approximations to the original
PDEs!~’ The simplest approach consists in first “bor-
rowing” the tools developed for low-dimensional dynami-
cal systems and applying them to spatially extended sys-
tems in regimes that display characteristics of low-
dimensional chaos. Then, it is possible to develop the
tools to be used in more complex regimes. In this paper
we try to improve the understanding of the connection
between low-dimensional chaotic systems and a certain
class of spatiotemporal systems: the one that exhibits
temporal chaos and spatial coherence. We focus on the
development of a methodology to study the role played by
nonattracting chaotic sets called chaotic saddles in cha-
otic transitions of high-dimensional dynamical systems.

I. INTRODUCTION

the size of a chaotic attractor as a control parameter of the
system passes through a critical vaftié??*We describe a
novel technique that uses the numerically computed stable
manifold of a chaotic saddle to characterize the homoclinic
tangency responsible for an interior crisis in a PDE.

For this study we have chosen the Kuramoto—
Sivashinsky(KS) equation as our model equation. The KS
equation is one of the most widely studied nonlinear partial
differential equations to model reaction—diffusion systems. It
was named after its derivation as a phase equation for the
complex Ginzburg—Landau equation, presented by Kura-
moto and Tsuzukd? and as a model for hydrodynamical in-
stability in laminar flame fronts, presented by SivashirfSky.
However, the KS equation had been previously obtained as a
model for the nonlinear saturation of drift waves associated
with the oscillation of plasma particles trapped in magnetic
wells created by the inhomogeneous magnetic field of a
tokamak?® Since then, the KS equation has been used to
study Rayleigh—Beard convection and flow of a viscous
flud down a vertical plané’ nonlinear saturation of
Rayleigh—Taylor instability in thin film&® and the dynamics
of bright spots formed by self-focusing of a laser bedive
choose a regime in which the dynamics of the KS equation is
chaotic in time, but remains coherent in space. This enables
us to develop numerical schemes for analyzing high-
dimensional dynamical systems. It is known that for certain
choices of the control parameters, the KS dynamics can be-
come chaotic in both space and time. In such regimes, very
different bifurcations and nonlinear mechanisms may appear.

Chaotic saddles are responsible for important nonlineawe believe the numerical investigation conducted in this pa-

phenomena, such as chaotic transiént$, chaotic
scattering>*2 and fractal basin boundarié$:1° It has also
been shown that chaotic saddles have crucial importance
chaotic transitions known as interior crises
low-dimensional’~?°and high-dimension&! dynamical sys-
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per can be a guide to extend the study of the KS equation to
the spatiotemporal chaos regime.
in  This paper develops as follows. In Sec. Il the KS equa-

in tion is numerically solved using the Galerkin method. In Sec.

Il two algorithms for finding chaotic saddles are described.
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In Sec. IV we study the presence of chaotic saddles in the KS Each integral of the exponential functions in Eg). van-
equation. In Sec. V we present our method to characterize ishes except when the exponent is zero. The three first expo-
high-dimensional homoclinic tangency using the stablenents are zero whek=1I. For the nonlinear term the expo-
manifold of a chaotic saddle. Section VI describes specifiment is null whenk=1—m. After solving the integrals, Eq.
details regarding the numerical procedures for finding cha¢6) becomes

otic saddles in the KS equation. The conclusions and final N

commentaries are given in Sec. VII.

II. THE KURAMOTO-SIVASHINSKY EQUATION

b= (k2= vkY)b,—ik > byb_m, k=—N,...N,
m=—N

()
whereN is the truncation order.
The coefficientdy in Eq. (7) are complex. We can sim-

The Kuramoto—Sivashinsky equation can be writtenplify our analysis by restricting to the subspace of odd solu-

8.55'21’23'26

du=— 92u— vasu— d,u?,

D

wherewv is a “viscosity” damping parameter and we assume

thatu(x,t) is subject to periodic boundary conditions
u(x,t)=u(x+2,t). 2

To obtain the numerical solution of E¢l) we use the
Galerkin method? by applying a Fourier decomposition for
the functionu(x,t)

u(x,t)=k2_ by(t)e'.

©)
A substitution of Eq(3) into Eq. (1) yields
J . ikx
E(kE_m by(t)e )
L . Al _
= _ W( k;w bk(t)elkx) _ VW( k;w bk(t)e'kx)
- i( > > bk<t>bm<t>eix<k+m>). 4
8X k=—o% m=—wx

After solving the derivatives in Eq4), one obtains

0 o] oo
kZ bkeikX:kZ kzbkeikx—ka k4bkeikx

- 2 2 ik mbbyetm. (5)
Next, multiply Eq. (5) by e ™, with |=—o, ... o,
and integrate in the spatial domain

2m * i i
> be™Ndx
0 k=-w

27 > .
=| 2 Kbe™* Ddx
0 k=—=

27 - i
- v X Kkbe*kNdx
0 k=-o

2m * *
- X X i(k+m)
0 k=—o m=-o

X bybye kM=,

(6)

tions, u(x,t) = —u(—x,t). It is possible to prove that if an
initial condition u(x,0) is an odd function, the solution of

Eq. (1) is odd for all timé
u(x,t)=—u(—x,t), Vxt. (8)

The Fourier transform of an odd function has purely
imaginary coefficients, so we can represent odd functions by
assuming thab,(t) are purely imaginary, setting

C)

wherea, are real numbers. After substituting E§) into Eq.
(7), we obtain

bk:_ %iak,

N
ak:(kz_ vk®)ay— Em;N AmAk—m>

k=—N,...N. (10)

Equation (10) contains unnecessary operations. Since
u(x,t) is real,—ia,=ia_y, and it is not necessary to com-
pute the modes with negatite Besides thata,=0 for |K|
>N, and some operations in the nonlinear term can be
dropped. Thus Eq10) can be written in the form
-1

2 r5Lmakfm_z Amak—m
m=k—N m=1

k=1

k
ak: (k2_ Vk4)ak+ E

11)

N
+ Z amam—k) )

m=k+1
with k=1,... N.

lll. ALGORITHMS

In this section two algorithms for detecting chaotic
saddles are briefly reviewed: the sprinkler and the proper
interior maximum(PIM) triple methods. The algorithms are
described for discrete-time maps. Thus, for differential equa-
tions the trajectories mentioned in the following sections re-
fer to the iterations of a Poincareap®!

A. The sprinkler method to find chaotic saddles and
their invariant manifolds

Associated to a chaotic saddle, there are stable and un-
stable manifolds. The stable manifold is the set of points that
converge to the chaotic saddle in forward time dynamics; the
unstable manifold is the set of points that converge to the
chaotic saddle in the time reversed dynamics. The chaotic
saddle lies on the intersection of its stable and unstable

manifolds®?32 and contains an infinite number of unstable
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periodic orbits(UPOs. In this section we describe a simple refinement of the tripled;,cq,b,) is created. Ane refine-
routine to obtain an approximation to a chaotic saddle and itenent of a triple @,c,b) is a finite set of pointg; in [a,b]
stable and unstable manifolds. such thata=gy<g;<...<gn=Db, |gk—Ok+1l<€e-|a—Db|,
Consider a system with an attractdrand a regiorR in andc=g, for somek, 1<k<N. Here,|a—b| denotes the
the phase space containing a chaotic saddénd no attrac- distance betweea andb. The next step is to find a new
tor (a so-called restraining regipnThe trajectories of all triple (a,,c,,b,) in the e refinement of &,,c,,b;). Then,
initial conditions inR will eventually leaveR and converge an e refinement of this triple is generated and a new triple
to attractorA, except for initial conditions lying on the stable (a;,c3,bs) is selected. This procedure is repeated obtaining
manifold of A, which is a set of measure zero. Initial condi- successively smaller PIM triples until the Euclidean length
tions close to the stable manifold are first attractechtand  of a PIM triple (@, ,c,,b,) is less than some specified value
stay close to its neighborhood for some time, before they aré, which defines the precision of the approximation. Lgt
repelled, following its unstable manifold. The closer an ini- be the intervala, ,b,]. Then, iterate the intervdl, that is,
tial condition is to the stable manifold of, the longer its iterate pointsa, andb, once using the Poincareap, obtain-
transient time before leaving. These facts lead to the sprin- ing a new interval ;. If the length ofl ; is less thary, iterate
kler algorithn?*®® to find chaotic saddles and their mani- |1, obtainingl,. Keep iterating , until its length is greater
folds. Define a grid withNy points uniformly distributed in  than é. In that case, refiné, using the PIM triple routine,
R. Obtain the exit time of each point, that is, the time it takesobtaining a new interval< §. The program proceeds iterat-
to leaveR. Those initial conditions with an exit time larger ing | and calling the PIM triple routine every time its length
than some specified timg constitute an approximation to exceedss. After each iteration one point frorhis plotted,
the stable manifold oA\, and their last iterations before leav- generating a single trajectory called the straddle trajectory,
ing R approximate the unstable manifold. The points at someavhich stays at a distance of the order &ffrom the true
time t = ¢t are the approximation to the chaotic saddle. Thechaotic saddle.
values oft, andt must be chosen after some trial and error, ~ 1he PIM triple method is usually more accurate than the

but usuallyt, must be large compared to the average exiSPrinkler method for systems with short transients, as in our
time = and £=1/2 seems to work fine in most systems, ac-C2Se- Thus, in the following sections we use the PIM triple

cording to Hsuet al% Let N, be the number of trajectories algorithm to find the chaotic saddles, and the sprinkler algo-

that are still in the restraining region afteiteratesN, typi- ~ Nthm is used to estimate their stable manifolds. We always
cally decreases exponentially with timet a rate 1A% compare the chaotic saddles obtained with both algorithms in
order to check our numerical results.
N{=Ngexp —t/7). (12
B. The PIM triple method to find chaotic saddles IV. NONLINEAR DYNAMICS ANALYSIS
In the sprinkler algorithm, a chaotic saddieis approxi- The dynamics of the system described by 84) can be

mated by a series of fragments of different trajectories. Th@nalyzed on a Poincasection defined by, =0. A trajec-
PIM triple method, first presented by Nusse and Yotke, tory representing the flow of Eq11) in a phase space de-
finds a single trajectory which stays close to the chaotidined by the Fourier modes,, can intersect this Poincare
saddle for an arbitrarily long time. section in two ways: whea; >0 (from “left” to “right” ) or
The PIM triple routine receives as an input a pair ofwhena;<0 (from “right” to “left” ). We adopt a Poincare
pointsa andb such that the line segmejd, b] intersects or mapP defined as theN—1) dimensional hyperplane given
“straddles” the stable manifold oA. In this situation, there by a;=0, with a,>0, so that a Poincarpoint is plotted
must, necessarily, be a pointbetweena and b which is  every time the flow of Eq(11) crosses the hyperplarsy
closer to the stable manifold of thana andb. The exit =0 from “left” to “right.”
time 7 is infinite for a point on the chaotic saddle or on its We follow Refs. 5 and 23 and solve E¢L1) with N
stable manifold, and the exit time tends to infinity as closer is= 16, since for our choices of the control parametethe
the point to the stable manifold @f. Thus, the exit time of dynamics is qualitatively the same fiir>16. A typical spa-
c, 7(c), is strictly larger thanr(a) and 7(b). The triple tiotemporal pattern ofi(x,t), recovered from the values of
(a,c,b) is called a proper interior maximum triple, or a PIM b, using Eqs.(3) and(9), is plotted in Fig. 1. Note that the

triple. dynamics is chaotic in time, but spatially coherent structures
An initial PIM triple can be found by selecting a large are preserved.
interval [a,b] in the restraining regiofkR. Given pointsa For certain values of, the trajectories of random initial

andb, the algorithm tries to find the poirtt of larger exit ~ conditions wander chaotically in a certain region of the phase
time thana andb inside[a,b]. The PIM triple routine di- space for some transient time, before they converge to an
vides the interval a,b] into N subintervals with the same attractor. During this chaotic transient, the trajectories are in
length, delimited by a grid of points aloi@,b]. After that,  the vicinity of a chaotic saddle. Figuré&? shows the varia-
the algorithm obtains the exit time of all the grid points andtion of a chaotic saddlégray) as a function ofv, superim-
selects three, not necessarily consecutive, points forming posed by the bifurcation diagram of the attradtaack). For

PIM triple (a;,cq,bq), by checking if the middle point;  each value o, we use the PIM triple algorithm to find 250
has exit time larger tham, andb,. Usually, forN not too  Poincare points of a straddle trajectory at a distanée
small there is one or more PIM triples jia,b]. Next, ane ~10"° from the true chaotic saddle, and plot the Fourier
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0.2 0.25 0
X/T 0

FIG. 1. The spatiotemporal pattern ofx,t) at v=0.029 920 06. The sys-

tem dynamics is chaotic in time but coherent in space.

(b)

ds

-2.9 ‘ ‘ ‘
0.0299190 0.0299211 0.0299232 0.0299253
\Y%

FIG. 2. (a) Variation of a4 for the chaotic saddlégray) as a function ofy,
superimposed by the bifurcation diagram of the attra¢back in a p-3

periodic window. IC denotes interior crisis and SNB denotes saddle-nodes
bifurcation. The dashed lines denote the p-3 mediating unstable periodic

Rempel et al.

componentag. The bifurcation diagram of the attractor was
generated by integrating E¢L1) and plotting 250 Poincare
points for each value of, after dropping the first 100 itera-
tions.

The saddle-node bifurcatioSNB) arrow in Fig. Za)
points to a saddle-node bifurcation that occursvatvgyg
~0.029924 98 and marks the beginning of a periodic win-
dow. To the right ofvgyg, initial conditions are attracted to a
chaotic attractor. In the saddle-node bifurcation, a pair of
period-3(p-3) stable/unstable periodic orbits is created.iAs
is decreased to the left ekyg, the stable p-3 attractdsolid
lines) undergoes a series of period-doubling bifurcations,
leading to a chaotic attractor localized in three separate
bands in the bifurcation diagram. The dashed lines in Fig.
2(a) denote the Poincangoints of the p-3 unstable periodic
orbit created abgyg, Which, in the Poincarenap, consists of
three saddle points with their associated stable and unstable
manifolds. As reported by Chiaet al,?® this UPO, hereafter
called the mediating unstable periodic or@iPO), is re-
sponsible for the onset of interior crisidC) at v=ryc
~0.02992021 and is found using the Newton methdhtit
vic, the MPO collides with the three-band chaotic attractor.
After the collision the chaotic attractor is suddenly enlarged.
We call the region occupied by the attractor throughout the
periodic window, the band regiorBj, and the region occu-
pied by the chaotic saddle, the surrounding regish{’~*°
Since the chaotic saddle shown in Figa?2lies in the sur-
rounding region, it is called the surrounding chaotic saddle
(SCS. It has been shown that for dissipative dynamical sys-
tems described by discrete maps, the stable manifold of
MPO determines the boundary between the band region and
the surrounding regioh.~°

After colliding with the mediating unstable periodic or-
bit, the band chaotic attractor loses its stability and is con-
verted into a chaotic saddle localized in tBeregion, im-
mersed in the abruptly enlarged chaotic attractor. In contrast
with the surrounding chaotic saddle, this newly created cha-
otic saddle is called band chaotic sadtB£S). In Fig. 2b)
we plot part of the same bifurcation diagram of Figa)2
prior to IC (v>v,c), and after IC ¢<v,c) we plot the varia-
tion of the newly created BCS.

It is important to stress that, although in Figapwe plot
the surrounding chaotic saddle only inside the periodic win-
dow (between SNB and I it is actually present in the
whole bifurcation diagram. Far<w,c andv> vg\g the cha-
otic saddle is embedded in the chaotic attractor. As an ex-
ample, Fig. 3 shows a three-dimensional projectian @1,
a,¢) of a chaotic saddle defined in the 15-dimensional Poin-
carehyperplane at=0.029 925> v\, to the right of the
saddle-node bifurcation in Fig(&®. This chaotic saddle is a
continuation of the surrounding chaotic saddle shown in Fig.
2(a). The chaotic saddle is not a continuous line. It has many
gaps, most of which are not visible in Fig. 3 due to their
small size.

For the range of the damping parametarsed in Fig. 2
and the spatial system site=27 the KS equation presents
ome features of low-dimensional dynamical systems. In the

orbit. (b) Same asa), but depicting the conversion of the three-band chaotic Chaotic regime the system exhibits only one positive

attractor into a band chaotic saddle after the left of IC.

Lyapunov exponent: which means that there is only one
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o T (a) -2550 |
-0.0124" 3
-0.0143+" \ |
| A6 50|/
a16 N SM\
—0.01674" \ 253 /\
. 254 - ‘ ‘
-1.840 -1835 -1.830 -1825 -1.820
-0.44 a
-05 -05 5
dio 1
FIG. 3. Three-dimensional projectiom{, a;q, a;5) of the chaotic saddle (b)
defined in the 15-dimensional Poincargperplane just before the saddle- -2.50 ¢
node bifurcation, av=0.029 925.
-251 | SCS _/7
expanding direction. An estimation of the fractal dimension // .
of the chaotic attractor at=0.029 920 06 using the Kaplan— @6 55, | s1vf — /-—BCS’
Yorke conjectur® results in the dimensioB~2.08, which \ \/’// //
implies that in the Poincarsection the chaotic attractor is a //\ "/
set of dimensioD ,= D —1~1.08, and hence the attractor is -2.53 / / SCS
T . . . T . L /

a low-dimensional set embedded in a high-dimensional VY
phase space. This can be seen in Fig. 4, which shows & 254 . P .
three-dimensional projectiora(, a,o, a;¢ of the Poincare -1.840 -1835 -1.830 -1.825 -1.820
points of the enlarged chaotic attractdECA) light line] as

after crisis (#=0.02992006), superimposed by the three-
band chaotic attractof(BCA) dark line§ at crisis (v FIG. 5. (a) Upper branch of the CA after the interior crisis, at
=0.02992021). Note the similarity of the enlarged chaotic™ 0.029 920 06. The dashed lines indicate segments of the SMs of the me-
. . . . . diating unstable periodic orbicross; (b) the BCS(light lines) and the SCS
attractor with the surrounding chaotic saddle shown in Fig. 3. ineg that compose the chaotic attractor showr(dn
The interior crisis occurs when the band chaotic attractor

collides with the mediating unstable periodic orbit and with

its stable manifold. In Sec. V we show that a homOC“niCSti” possib|e to determine thB and S regions' which are
tangency occurs at this crisis, i.e., the tangency between thgparated by the stable manifold of MPO. Figure 5 shows a
stable and unstable manifolds of MPO. After the CriSiS, it iStWO_dimensionaj projection%,ae) of the chaotic sets for
vr=0.029 920 06, after the crisis, around the upper branch of
the chaotic attractor shown in Fig. 4. Figur@bshows the
chaotic attractofCA) and Fig. %b) shows the corresponding

B (light lines) and S (dark lines chaotic saddles. BCS is
localized in a region of the phase space previously occupied
by the precrisis band chaotic attractor. SCS is the continua-
tion of the precrisis surrounding chaotic saddle. It can be
seen from Fig. 5 that the postcridisand S chaotic saddles
are subsets of the enlarged chaotic attractor. This decompo-
sition of the postcrisis chaotic attractor into two chaotic
saddles is important in the stufyand controf® of crisis-
induced intermittency.

V. VISUALIZING A HIGH-DIMENSIONAL HOMOCLINIC
TANGENCY

-05

-0.5

a,

In this section we show that at the interior crisis of Fig.

2 the chaotic attractor is tangent to the stable manifold of the
surrounding chaotic saddle. We elaborate a method to visu-
alize this tangency in a high-dimensional phase space. Using
a suitably chosen grid of initial conditions for the sprinkler

FIG. 4. Three-dimensional projectioa, a,q, a;¢ of the ECA(light line)
defined in the 15-dimensional Poincatg/perplane after crisis at
=0.029 920 06, superimposed by the three-B@ark lines at crisis (v
=0.029 920 21).
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o
(S,
'y
T
1

-2.52

-2.53

-2.54

255 * .

| I |
-1.84 -1.835 -1.83 -1.825 -1.82

1
-1.83 -1.825 -1.82
ds

-1.835

FIG. 6. Grid construction using four points of the chaotic saddiey) —2.32
around the upper branch of the chaotic attractblack ling at v,

=0.029 920 21.(a) The grid points in the line segmeAB are found by a4
linear interpolation. The same is done to find the grid points in segments

CD, AC, andBD. The grid points inside the polygohBCD are found by

linear interpolation of points in the edged) Points outside the polygon —2.34

ABCD are found by linear extrapolation.
-2.35
e\ [Va,

. . . L. 3631 0.3 5.3

algorithm, we plot a two-dimensional projection of the stable
manifold of the surrounding chaotic saddle in the vicinity of a,
the chaotic attraCt(_)r‘_ We argue that this method can be USGIQG. 7. Three different viewpoints of a three-dimensional projectiay, (
to show a homoclinic tangency between the stable and uny,, a,), of the grid along with part of the surrounding chaotic saddirk
stable manifolds of MPG! lines) at v,c=0.029 920 21. The grid is close to every point in this part of

In a previous work, Lai and Winslot used the sprin-  the chaotic saddle.
kler method to find the stable manifolds of a chaotic saddle
in a high-dimensional phase space of a coupled-map lattice.
They used a grid of initial conditions generated by varying
the values of two of the state variables while keeping all theg qivided into n subintervals delimited by pointp;, i
other state variables with constant values. This approach is 1,...n+1, and the line segmefiC,D] is divided inn
not suited for our application, since we are interested iny,yintervals delimited by points;, i=1,...n+1. After
showing the tangency of the stable manifold of SCS with the[hat, each line segment defined by a pair of poims ) is
chaotic attractor. It is difficult to visualize such a tangency inqivided in m subintervals. Linear extrapolation can be used
a high-dimensional phase space, and all the 15 coordinates pf 544 points outside the original polygon, as exemplified in
each grid point must be carefully chosen. Figure 6 |Ilustrate§gig. 6(b). For instance, to add ten points above and ten below

the process used to create the grid around the upper brangky, segmenftA,B], divided inn subintervals, one can use an
of the band chaotic attractor shown in Fig. 4. First, a set Ofexpression like

four points @A, B, C and D) is chosen from the chaotic _

saddle(gray lines surrounding the chaotic attractélack pi=B+i(A—B)/n,

line). These points form a sample from which the grid is PP

interpolated. Figure @) shows a grid of points inside a poly- 1=-10-9,... n+10. (13
gon defined by the verticesBCD. The line segmentA,B] Following this procedure, a grid is built close to one of

-2.33
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FIG. 8. Two viewpoints of projectionsag, ag, a;) (a), (b) and @g, ag, a;0) (c), (d) of the grid with part of the surrounding chaotic sadtlark lineg at
»c=0.029 920 21.

FIG. 9. Two viewpoints of projectionsag;, a;,, a;3) (a), (b) and @44, a;5, 216 (¢), (d) of the grid with part of the surrounding chaotic sadelerk lines
at v,c=0.029 920 21.
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the branches of the chaotic attractor. This grid will be used to 10 T . . .
show a cross section of the stable manifold of SCS in the 15
dimensional(15D) Poincarephase space.

In Fig. 7 part of SCS around the upper branch of the
chaotic attractor ai|c is plotted along with the grid gener- =
ated. The three different views of this three dimensi@@8)) Z"’
projection @,, as, a4) suggest that the grid is approxi- -
mately tangent to each point on this part of the chaotic set. InE
order to verify if the same happens in the other coordinates
of the phase space, we plot a series of different 3D projec-
tions involving all the Fourier modes. These projections,
shown in Figs. 8 and 9, reveal that the linear interpolation
method is able to define an appropriate grid to study the . . . .
dynamics in the vicinity of these chaotic sets. 0 20 40 80 80 100

To show a tangency between the chaotic attractor and t
stable manifold of SCS, to be calculated on the grid of points
with the sprinkler algorithm, the grid points must “touch” all FiG. 10. Exponential decay df,, the number of trajectories inside the
the points on the chaotic attractor. In order to estimate theestraining region at timé, as a function ot. The inverse of the slope of
precision of our method for this problem, we compute thethe fitted line gives the average exit time-27.9.
average distance between points on the attractor and the grid.

The distance can be computed as follows:

(1) Randomly choose a poiptfrom the upper branch of the
chaotic attractor;
(2) search for the grid pointj closest(with the smallest (a)

Euclidean distangeto p; —2.50 |
(3) save the distanca,=|p—qll;
(4) repeat steps 1-3\ times; _2.51
(5) obtain the average distance between points on the attrac
tor and the grid as
LN 9 s _,5p |

-253 |

For the grid in Fig. 1b), which has 575 333 points, we find
D=4.20x10 ° for N=500, which can be seen as an esti- D54 o esnmnme 2
mate for the precision of the grid. The use of finer grids -1.840 -1.835 -1830 -1.825 -1.820
results in a smalleD. ds

Once the grid is defined, the sprinkler method can be
readily applied. In order to set the value tefwe first com-
pute the average exit time Given Ny initial conditions we (b)
computeN,, the number of trajectories that are still in the
restraining region aftet iterates(the restraining region for
this problem is discussed in Sec.)VFigure 10 shows a -2.51
graph of log\; versust at v,c, whereNy=10000 different
initial conditions were used. The graph can be fitted with a g
straight line of slopey=—3.59x 10" 2+ 1.45x 10" 4, which
gives an average exit time=—1/y~27.9 [see Eq.(12)]. ~-
Based on this value we choosg=45, since it should be -253 |
large compared te. Actually, the numerical results are not
very sensitive td. and different values give similar results,

-2.50 |

-2.52 |

DAY

as long as they are not too small. - 5_41 840 ';1_'835 -1.830 ) _1 825 _‘;_‘820
We proceed by obtaining the exit time for each grid a
5

point. Points with exit time larger tha are considered as
part of the stable manifold of SCS. In Fig. 11 we plot therig. 11. Piots of the upper branch of the Cght line), the SCS(dark
upper branch of the CAlight line) with the surrounding lines and its stable manifold&lots in the background(a) before the inte-
chaotic saddle SC8&lark lines and its stable manifol@dots rior crisis, at »=0.0299211; and(b) at the interior crisis, v

; . _ ‘i =0.029 920 21. The cross denotes one of the Poinpaiets of the p-3
in the baCkgrounhfor' (@) »=0.029 9211(before crisi$ and mediating unstable periodic orbit. The dashed lines represent segments of

(b) v= 0-_02_9 920 2_1(5_“ crisig. The upper Poincarpoint of ¢ boundary between the band region and the surrounding region, given by
the mediating orbit is represented by the cross. Note thahe SMs of the mediating unstable periodic orbit.
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0.998 -1.810
(a) (b)
0.996 [ -1.820 |
a 3 0.994 a 5 -1.830
0992 | -1.840 |
. . .
0595065 0.3115 03165 0.3215 800,
a;
0.513 -0.100
(©) (d)
0.508 | CA
| -0.105 |
a; 0508 / a,
0110 |
0.498
SM SM SM
0.493 . . -0.115 . .
22535 2528 2521 2514 2507 0017 0.018 0.019 0.020
de ds

553

FIG. 12. Four different two-dimensional projections showing the homoclinic tangency between one of the three branches of the CA aithtihe&Nhes
of the mediating unstable periodic orlfdross at the interior crisisy,c=0.029 920 21.

SCS has a large gap between the two dashed lines, and maatycrisis theS chaotic saddle and the chaotic attractor collide.
other smaller gaps, or discontinuities. Its gaps are due to th€he collision takes place at the mediating orbit, which be-
horizontal white spaces in the background, which reflect thdongs to SCS. Likewise, the chaotic attractor collides with
fractal structure of the stable manifold of SCS. The fact thathe stable manifold of SCS.

SCS always intersects its stable manifold, and its gaps al- Recall that the stable manifold of MPO determines the
ways coincide with the white spaces in the background indiboundary between the band region and the surrounding re-
cate that the grid was well chosen. FigurdIreveals that gion. In our system, the mediating orbit has 14 stable eigen-

~0.1200 0.0283
a b ! ” ’I
( ) ( ) SM [/ /SM
7/
/ I
—0.1210 | SM 0.0282 | ¢ CA /
a as
— CA
~0.1220 | 0.0280 | //
N
SM
~0.1230 - - 0.0278
20.403 ~0.398 ~0.393 —0.388 £6.0550 -00533 200517 —0.050¢
do aip
~0.0140 , 0.330 :
© S @ RN
rd
/’//Ci&/' M
—0.0142 | Z 002 | SM\ CA \
\
as // a,
4
—0.0144 | // 0313 | \
SM / J/
'
4
SM
-0.0146 /. - 0.305
—00157 00153  —0.0140  —0.0145 20.01260 0. 01240 20.01220
ais a6

FIG. 13. Four different two-dimensional projections showing the homoclinic tangency between one of the three branches of the CA afuthtie&hhes
of the mediating unstable periodic orljdross at the interior crisisy,c=0.029 920 21.
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values(with absolute values less than onienplying that the (a) -25 ‘ ‘ e
invariant stable manifold of the mediating orbit has dimen-

sion 14. The numerical computation of high-dimensional in- 26 |

variant stable manifolds of an unstable periodic orbit is a

highly complicated task. Recent works have presented the ds 27 SCS —-
computation of two-dimensional invariant manifoftis*2

The computation of stable manifolds of much higher dimen- /~—cA
sions, as in our case, is still a challenging task. However, we 287

can approximate one-dimensional projections of segments of CA

the stable manifoldSM) of the mediating orbit close to the B e Al 2lE  —8r  alpe
tangency points using the stable manifold of SCS, to deter- ds

mine the local boundary between regidandS, as shown
by the dashed lines in Fig. 11. This can be done since the (b)
stable manifold of SCS and the stable manifold of any UPO
on SCS are practically indistinguishaBfe*® Using this
method we reveal in Fig. 1) the tangency between the
chaotic attractor and the stable manifold of MPO. At crisis, s
the chaotic attractor is the closure of one branch of the un- | ‘
stable manifold of MPG? Thus, we have demonstrated in 287 Ll N
Fig. 11(b) the homoclinic tangency between the stable and CA
unstable manifolds of MPO. Although Fig. () shows only
a two-dimensional projectionag, ag) of the phase space, 2810 218 217 216 -2.15
the collision can be observed in projections onto any choice ds
of Fourier modes, as seen in Figs. 12 and 13. ( ) 285

C :

-2.85

SCS —
-2.86

VI. DEFINING THE RESTRAINING REGION
-2.86

Both the sprinkler and the PIM triple algorithms, used in
the previous sections, require the definition of a restraining
region, which is a region of the phase space which contains a 287
chaotic saddle and no attractor. The definition of such re-
gions can be a complex task in a high-dimensional phase
space. We consider different strategies for different situa- 088 - R
tions. 219 -218 -217 -2146 -2.15

For the values ofs for which the attractor is a periodic s
Or,blt the restraining region can be defined a,s the phase SpaEﬁ;_ 14. (a) SCS(gray) and CA(black) at crisisvc ; (b) enlargement of the
minus a set of small spheres around the periodic points of thRctangular region ina) showing the definition of the restraining region
attractor. In order to increase computation speed it is enoughith a box covering one of the branches of C&) simpler restraining
to cover just one of the periodic points. The PIM triple algo- region, using onlyas to determine if a point is in the band region or not.
rithm looks for a trajectory that stays forever outside the
sphere, that is, at an Euclidean distance larger than a speci-
fied radius from the periodic point. onto different planes show similar pictures. The surrounding

Inside the periodic window, after the sequence of periodchaotic saddle is found as a straddle trajectory that never
doubling bifurcations, the attractor becomes chaotic and ignters the box. The box created with this simple method
localized in three separate branches on the Poinglame. contains this branch of CA due to its particular shape. Dif-
To define the restraining region it is necessary to cover onérent branches could require boxes constructed in different
of the branches without covering parts of the surroundingvays. Alternatively, other types of covers can be used, such
chaotic saddle. Figure 14 shows the situation at the interioas sets of spheres, with the care that these spheres do not
crisis pointv,c, when the CA(black lineg touches the sur- cover parts of the surrounding region. We have tested several
rounding chaotic saddle SQ§ray lines. For this case, itis forms of restraining regions, all of which produced similar
possible to isolate one of the branches of the attractor bghaotic saddles. In our particular case, we find that the sim-
covering it with a 15D box whose projection onto the planepler restraining region can be defined by considering only the
(a5, ag) is shown in Fig. 14b), an enlargement of the rect- as axis, as in Fig. 1&). Since the two vertical dashed lines
angular region in Fig. 14). The upper-right corner of the in Fig. 14c) do not intersect other parts of the chaotic sets,
box is defined by the coordinates of the mediating unstabléhey can be used to identify numerically the points falling
periodic orbit. The lower-left corner can be obtained frominto this branch of the chaotic attractor.
the chaotic attractor. A long chaotic trajectory is generated on  After the interior crisis it is not easy to identify the band
the attractor and the point with the lowesf or ag value is  and surrounding regions. However, for v ¢, but still close
taken as the lower-left corner of the rectangle. Projectionso the crisis point IC, BCS is localized in three separate

de SCS
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(a) -2.85 — : : , other situations. Nevertheless, many systems exhibit low-
dimensional chaotic attractors in high-dimensional phase
; spaces, with sequences of bifurcations and crises similar to

-2.86 | . /X 1 the cases discu;sed in this paper, and it should be possible to

Qs l Py apply the techniques explained here in such systems. Ex-
! s ; amples of numerical analysis of partial differential equations
287 7 5 1 which exhibit low-dimensional chaos include a model for the

nonlinear evolution of low-frequency magnetohydrodynamic
oscillations in plasma& a generic model for the propagation
—2.88 : i of nonlinear waves in forced, spatially extended medfim,
-219 218 217 216 -2.15 . . .
and a model for semiconductor devié@€Experimental ex-

a : . . .
> amples include a magnetoelastic rib8n,electronic
(b) 28— — circuits®” a dripping faucef® experiments with air
3 i 7 bubbles!® and lasers?
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