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Lightly doped and compensated quantum wells: The density of states in the dipole model
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We present a calculation of the density of states (DOS) of electrons bound to donor impurities in
a lightly doped and compensated quantum well. We use a quasiclassical treatment suitable for low
compensation in which we apply the dipole model. If the full electron-electron Coulomb interac-
tions were taken into account, instead of the short-range dipole interaction, a Coulomb gap should
appear around the Fermi level. But this model is able to describe the small peak of unoccupied
states that appear, as a result of compensation, in the high-energy side of the DOS. In this work we
show how the additional peak varies with the well width, impurity concentration, and compensation

in the small-impurity-concentration limit.

It is well established by now that a gap in the density of
states (DOS) occurs at the Fermi level in a lightly doped
and compensated semiconductor. In the past Efros, Van
Lien, and Shklovskii! have calculated the DOS, using a
numerical simulation method due to Baranovskii et al.?
to obtain the ground state of this system, in the so-called
classical impurity band model. In fact, when the impuri-
ty concentration is very small the electrons are in the
completely localized regime. The overlap of the wave
functions representing the one-electron ground state is
negligible as the average distance between impurities is
much greater than the localization length. In that case
the donors and acceptors can be assumed as point
charges.’

At sufficiently low temperatures all acceptors are ion-
ized. If n; represents the occupancy of a donor i, 7,
stands for the distance between that donor and an accep-
tor u; the system can be described by the classical Hamil-
tonian:
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For low compensation the ionized donors are those near
an acceptor, resulting in unoccupied electron states with
higher energies than those occupied at neutral donors.

It turns out that a simple way to treat that problem
analytically is the dipole model: each acceptor ionizes its
nearest-neighbor donor and the pair does not perturb the
states of neutral donors as its potential rapidly decays. A
bandwidth appears in this additional peak at the DOS lo-
cated at e?/kr, where r is the distance between atoms in
the pair, corresponding to the unoccupied ‘dipole
states.” The spread in energy is due to randomness in the
dipole moment. Using this simplified picture, a two-
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peaked DOS comes out: a deltalike peak due to states in
neutral donors and a separated broad peak of the unoccu-
pied states in the donors forming dipoles with ionized ac-
ceptors. Actually, fluctuations of the electrostatic poten-
tial at the neutral donors are responsible for a consider-
able broadening of the delta peak. However the DOS
does not change qualitatively and indeed the dipole mod-
el was shown* to give very good results in the calculation
of the electric field distribution.

In this work we extend the dipole model to treat a
lightly doped and compensated semiconductor hetero-
structure: the Ga,_,Al As/GaAs quantum well (QW).
We assume that hydrogenlike donor and acceptor impur-
ities occur in the small gap layer of GaAs. The impurity
concentration is allowed to vary along the QW according
to a normalized profile P(Z;), where Z; is the distance to
the center of the well. We assume, per unit volume, N,
donor impurities, and N ,=KN acceptors—K is the
compensation—in the QW of width L and define the
effective two-dimensional concentration np, =N L.

The single-impurity problem has been treated varia-
tionally by Bastard.” His calculations, although they
have been subsequently extended to include several im-
provements, present the right qualitative behavior and
are accurate within 10%. In a way, we can express the
ground-state energy of an electron bound to a shallow
isolated donor as

E(Z;LY=a(L)Z}+b(L)Z}+c (L), (2)

where we have fitted Bastard’s results with a fourth-order
polynomial. If we measure (as we do hereafter) the ener-
gies in effective rydbergs and distances in the effective
Bohr radius (1Ry*=5.8 meV and a =100 A for GaAs,
respectively) we obtain the parameters shown in Table I,
where we have made E (0;L)=0. So for low concentra-
tion and uncompensated samples, the DOS becomes
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TABLE 1. Coefficients of the fourth-order polynomial adjust-
ed to fit Bastard’s eigenvalues of the isolated-impurity problem
in the QW. Units are so that, if Z; is computed in units of ag,
Eq. (2), with the above coefficients, gives the energy in Ry*
[C(L)=0].

L=1 2 3 4 (ad)
a —14.26 —0.788 —0.128 —0.030
b 7.506 1.706 0.676 0.336
D (e)=np [ P(Z)8(e—E(Z;L))dZ, . 3)

In the case of uniform distribution inside the well,
P(Z;)=L ', and using Eq. (2) we obtain

D, (e)=nplla | 7262 N2 {[1—FL(e)21fL()}V2, @)
with ,
fre)=1—4la;|e/b} , (4a)

where a; =a (L) and so on. Observe that Eq. (4) diverges
at £=0 what is due to the minimum at this energy. The
structure of this DOS has already been extensively dis-
cussed.’ ™’

Let us assume now that the impurities (both donors
and acceptors) are distributed only within a thin layer
around Z; of width A inside the well and in such a con-
centration that A <<L <<R,, where R, is the average
separation between impurities. Then each donor-
acceptor pair in the QW contributes to the DOS with en-
ergy E(Z;:L)+2/r giving origin to the upper branch of
the DOS. So,

D(g;Z,)=(1—K)DNe—E(Z;L))
+KD*(e—E(Z,,L)) , (5)
with
DM(w)=n,8(w) (5a)

and

2
D®(w)=np [p(rs w—= \dr, (5b)

where now 7, =NpA and p(r) is the probability for the
donor pairs to be separated by a distance » and is given
by the Poisson distribution

—'ﬂ'rz’ﬂ
p(r)=2mrype b, (6)

The above two-dimensional limit approximation can-
not be used if A S L and the problem then becomes much
more complicated. Some of us”® have treated this case in
a more severe circumstance, namely, for intermediate
concentration, when the overlap between the electrons
wave functions cannot be neglected. We have shown® in
that case that the transfer matrix, or the hopping, be-
tween impurity sites i and j is not very sensitive to the po-
sitions Z; and Z; up to an impurity layer width of the or-
der of L /2. Then, we could consider for the DOS the ap-
proximated following expression:

D(e)= [P(Z,)D(¢Z,)dZ; , %)
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FIG. 1. Density of states (DOS) per donor as calculated by
Eq. (8) for the concentrations (a) 10® cm™2, (b) 10° cm ™2, and (c)
10" cm ™2, We used L =4a§ and compensation K =0.1.

where D (g;Z;) is the DOS calculated as if all impurities
were located at Z;. To follow this reasoning in the case
of lightly doped QW’s one must treat the dipole energy
2/r; as was done for the hopping. Fortunately it turns
out that in this case the above approximation [Eq. (7)] is
much better. In fact, within our precision (10™* Ry*),
2/r;; does not change with |Z; —Z;| because we are al-
ways considering situations so that 5 !/2>>L.
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FIG. 2. The DOS now for different well widths L (a). In this
case 11, =10 cm ™2 and K =0.1. (b) shows detail of the extra
peak of empty dipole states.
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FIG. 3. Results of the DOS [Eq. (8)] for the compensations
K =0.1,0.1, and 0.3 with L =4a§ and %, =10""cm ™2

Then, we can approximate the total DOS for the light-
ly doped and compensated QW with the following two
branches:

D, (e)=(1—K)D}"(e)+KD*(¢)
= [P(Z,)D(Z,)dZ; , (8)

where D (g;Z;) is the one given by Eq. (5), D{"(¢) by Eq.
(3) and

De)=np [dZ, P(Z,) [ P(r8(e—E(Z;L)—2/r)dr .
)

For the uniform distribution P(Z;)=L !, D}V is given
by Eq. (4) and
2}

27}
Dl(;z)(e):_ﬂﬂfo]“/zexp

L D e TE(Z;L)
2 f
e—E(Z;L)

XO(e—E(Z;L)dzZ, .  (10)

Figures 1-3 show the calculated total DOS [Eq. (8)]
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FIG. 4. Distribution of neutral donors inside the quantum
well as varying with the compensation. The well width used
was L =4a® and 7, =10""cm ™2,

for several impurity concentrations, well widths, and
compensations, respectively. We have assumed in all sit-
uations a uniform profile. All the DOS are normalized to
1. We can see that the principal effect of a small compen-
sation on an n-type doped QW as revealed by the above
calculations, is the formation of a small broad peak at
higher energies.

It is important to observe that the energy in the dipole
states which is in the average 27}/? above that of the neu-
tral impurity is, at the maximum, of the order of 0.1 Ry*.
This is quite small as compared with the spread in energy
only due to the randomness in Z; (independent in the
compensation) which is itself of the order of 1 Ry*. Due
to this fact, most of the second branch of the DOS over-
laps with the first one, meaning that some dipole states
will be occupied, preferably near the center of the well (as
shown in Fig. 4) and then isolated point charges will
occur. The peak corresponding to unoccupied dipole
states is expected to be well described in our calculations.
The peak should be observed in experiments at very low
temperatures and its maximum occurs at 1.04 and 0.87
meV separated from the nearest-neighbor peak for
L =1a} and 4a{, respectively, with n;, =10 cm~? and
K =0.1.
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