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Resonance of the magnetophonon conductivity in two-dimensional systems
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In this work, we have investigated the behavior of the line shape of the cyclotron resonance for a
two-dimensional electron gas interacting with longitudinal-surface-acoustical phonons, in the pres-
ence of a strong magnetic field. The magnetophonon conductivity is evaluated in terms of the dissi-
pative and reactive effects on the electron gas, using the memory-function formalism. New results
for both temperature and magnetic field dependences of the cyclotron resonance are studied and
compared with conflicting points of previous works. Besides, it is shown that a splitting on the
dynamical conductivity peak should always be expected for magnetic fields lower than the corre-
sponding one to the quantum limit, i.e., with only the first Landau level occupied, in agreement with

what has been found experimentally.

I. INTRODUCTION

In recent years there has been much interest in the
magnetotransport properties of a two-dimensional elec-
tron gas (2D EG) confined to a plane as in the silicon
metal-oxide-semiconductor field-effect transistor (MOS-
FET) or in Ga,_ Al As/GaAs heterostructures.! The
cyclotron resonance (CR) in a high magnetic field applied
in the direction normal to the electron layer has been one
of the most useful tools for investigating the dynamical
properties of such materials, for various scattering mech-
anisms.!? For instance, the CR measurements obtained
from a magneto-optical absorption spectrum of a 2D EG
interacting with longitudinal-optical (LO) phonons can
give important descriptions of polaronic effects, e.g., the
polaron cyclotron resonance mass renormalization.’

In a general form, the interaction between the 2D EG
and bulk LO phonons as well as 3D longitudinal acousti-
cal (LA) phonons have been the subject of a great number
of theoretical’ > and experimental studies.>’ On the oth-
er hand, a small number of theoretical works exist aiming
to investigate the role of the interaction between two-
dimensional electrons and surface-phonon modes.®° In
Ref. 9, the authors showed that the dominant contribu-
tion of the electron-phonon interaction, in the case of
thin quantum wells, arises mainly from the interface
modes, whereas the largest contribution for thick layers
larger than 100 A comes out of the bulk phonon modes.
Furthermore, recent experimental data revealed some in-
teresting aspects of this kind of scattering process. For
instance, the work of Wixforth et al.® showed that for
some heterostructure architectures, the 2D electron
—surface-acoustic-phonon interaction under strong mag-
netic field may be responsible for quantum oscillations in
the sound attenuation. Also, Brumell er al.” suggested
that the observed temperature behavior of the magneto-
phonon resonance on Ga,_,Al,As/GaAs heterostruc-
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ture could arise from the scattering of the 2D EG by in-
terface LO phonons.

In this sense we are interested in describing the funda-
mental role of the electron- and surface-phonon interac-
tion in a 2D EG for studies of the cyclotron resonance.
The properties of the CR of the two-dimensional electron
gas interacting with LA phonons were first studied by
Horovitz et al’ and more recently by Hu and
O’Connell.'® Meanwhile, some fundamental aspects on
the electron dynamics, which were not considered in pre-
vious works, are described here in a systematic way. The
electron-phonon interaction is treated here in terms of
the memory-function (MF) formalism for the case of LA
phonon scattering. We evaluated the dynamic transport
properties of a 2D EG, within a simple model for finite
temperature, discussing the electron-phonon scattering in
terms of the bare density-density correlation function, at
low-density limit, in such a way that screening effects
may be neglected. Furthermore, the broadening of the
Landau levels, due to impurity scattering,! as much as
the nonparabolicity effect of the conduction band® are
also neglected for the sake of simplicity. In Sec. II we
present the memory-function approach. A systematic
analysis of the temperature and magnetic field behavior
of the MF contributions is performed in Sec. III together
with the numerical calculation of the magnetoconductivi-
ty. Finally, in Sec. IV we summarize the main con-
clusions and make supplementary comments concerning
some controversial points with previous works.

II. MODEL HAMILTONIAN
AND MEMORY-FUNCTION FORMALISM

It is well known that when a strong magnetic field H is
applied perpendicular to the 2D electron motion, such as
formed in inversion layers in MOSFET or other semicon-
ductor heterostructures, the energy levels of the 2D
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noninteracting electron gas are completely quantized into
discrete Landau levels. In the absence of impurity
scatterers, the 2D density of states becomes a collection
of Dirac 8 functions at the positions of each Landau lev-
el. In this sense, neglecting impurity scattering, we will
treat here only the interaction between the 2D EG and
the surface LA phonons, under the action of a perpendic-
ular high magnetic field. The Hamiltonian describing
this interaction is given by

H= Ekﬁwc(n +1CHCoit 3 fiwgblb,
n, q

+ 3 D(qle v (b, +b" ), (1)
n’q

where the first term represents Landau quasiparticles
with energy ¢,, with n =0,1,2,... being the Landau-
level index. The frequency w, =eH /m, is the bare cyclo-
tron frequency, whereas m;, means the effective band
mass. In the above equation, coq is the 2D LA-phonon
frequency, whereas b, and bq are the destruction and
creation phonon operators and D(q) is the electron-
phonon interaction potential. Moreover, all vectors ap-
pearing in the above equation are 2D vectors in the X-Y
plane.

In the holomorphic memory-function approach of
Gotze and Wolfle,!! the dynamical conductivity at finite
magnetic field can be expressed as'?

nF(sn)_nF(En )

n2 (e
> oto,, —o

)=—2 Y ¢2|D(q)?

n,n',q

'l"

q

In the above equation the terms 1z(g) and p(
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o (0)=0,(0)tio,, () [oFo, +M(0)] ",
b
(2)
with

M(w)=M(0)+iM,(o) , (3)
where 0,,(w) and o0,,(w) are the two-dimensional trans-

verse and Hall conductivities, respectively, whereas -+
(—) denotes the left (right) circularly polarized wave and
n, means the total number of carriers per unit area with
charge —le|l. M,(w) and M,(w) are the real and the
imaginary diagonal parts of the so-called memory func-
tion, M(w)."* They describe, respectively, the reactive
and the dissipative effects on the electron dynamics, and
are responsible for the shift and the width of the cyclo-
tron resonance line.

In our derivations, we express the memory function in
terms of the diagonal (retarded) force-force correlation
function, TR (). Using the projection-operator formal-

ism,'* one gets
M, (0)=——— [ (0)—TI% (0)] @
n,myw
where
[773 7’]3((0,,’,,')] —-(wq—>—a)q) (5)

) denote, respectively, the Fermi-Dirac and Bose-Einstein distribu-

tion functions. The double summation over the Landau-level indices n and n’ reflects the possibility of transitions be-

tween different states, with the energy separation given by

o, =g, —e,)=(n"—n)fiw, (6)
The function C, ,(q) (Ref. 12) appearing in Eq. (5) is given by
2(n'—n)
1 n! qu —1 q2/2 —
C. . ] Ln n 2 2 2 , 7
w7 (L)~ "(13g%/2)] @)

where L ~"(x) is the generalized Laguerre polynomial'® and /,=(#/m,w_)'/* stands for the magnetic radius length.
In the Bohm-Pines random-phase approximation, the polarization function for noninteracting 2D electron gas is

[nF(En )_nF(sn’)]
+id

X(qaw)z 2 Xn,n'(q’w)z 2

gt oto,,

with

x(q,0)= 3 X, (q@)+ix, ,(qe).

Cn,n’(q) ’

(8)

9)

The real and imaginary parts of the MF which are related to each other by the Kramers-Kronig relation can be writ-
ten, after some algebra in terms of the polarization function as

M,(0)= 3 ¢2|D(q)*{[np(w

n.m,w q

and

—nploto,)x"(q, ot+w,)+[nplw,)—

Nple, —o)]x"(q, 0—aw,)} , (10)
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2

n,myw

Ml((l))z

3 q2|D(q)|? |coth(Bw, /2)[X'(q0+w,)+X'(q0—0,)—2)'(q,0,)]
q

+ 3 coth(Bw, ,/2) X n(@ @+ @)+ X0 0 (@ @ —0g)—2X, »(q,0,)] | (11

n,n'

with B=(kpT)" !, where kj is the Boltzmann constant and T is the temperature. The factor 2 in the above equations

arises from the spin index summation. Thus, according to Eqgs. (2) and (3) we obtain directly the real and imaginary
part of the dynamical conductivity o (w) as

n,e? M,(w)

m, [0Fo,+M(0)P+[M(0)])*’

Reo (w)= (12)

and

n,e’ oFo,+M(0)

my, [wFw,+M(0)]P+[My0)]*

Imo (0)=

III. EVALUATION OF THE MF CONTRIBUTIONS AND NUMERICAL RESULTS

In this section we perform the evaluation of the frequency-dependent MF, as a function of the temperature and the
magnetic field. We describe the 2D electron—LA-phonon interaction in terms of the deformation potential matrix ele-
ment Dy ,(q) (Ref. 16) and the Debye model for the phonon frequency, i.e., ®, =c,q, with ¢, being the velocity of the
surface acoustic waves. In the case of Si MOSFET,"’

#iZ5q°

2pw,d ’

Dy A(q)= (14)

where =, means the deformation potential coupling, p is the mass density, and d is the thickness of the inversion layer.
Then, performing the substitutions in Eq. (10), we find

M=o [ *dg ¢*—————C, (@nsle,)=mple,)]
W)= ——a , €,)— €,
2 Smg ,,,z,u 0 949 (l—e#ﬁﬁw") nn\gINFEy, NrlE,
—1_#ifw
X ——”——(ﬁ;fi+we) 5(ﬁw+ﬁwq—(1)mn') +o——w)|, (15)
(e 1)
where
252m
= gyl (16)
n,pdc,ly

In the present approach, no overlap of the density of states of the adjacent Landau levels is considered and only tran-
sitions between Landau levels, due to thermal electron excitations, are responsible for the electron dynamics. It is re-
quested that the available transition contributions must satisfy the conditions 0=n =(N_,,—1) and n'>(N_,, —1),
where N ,, means the maximum number of levels completely filled. On the other hand, there are some prohibited tran-
sitions, since we assume that the Landau levels are either fully occupied or empty, and then the Fermi level E lies mid-
way between the last occupied Landau level and the first unoccupied one.

Then, we can write M,(w) in the following way:

firlga on
M,(w)= - fo dqq

—lAﬁT 2 Cn,n +m(q)e(Ep—En )e(£n+m —EF)

b (1-6 q) n,m
i __
X (w)’l%—?}-)—&ﬁwq—mﬁwc-%ﬁw)
q _._1)
—#fw __
+~0) =250, —m o, —fio)
(e 7 —1)
—8(tiw, + mhio, —fiw)] |, (17)

with n’ being replaced by n +m, where m is a positive integer (m =1,2,3,...). ©O(x) is the Heaviside step function, so



41 RESONANCE OF THE MAGNETOPHONON CONDUCTIVITY IN . .. 8375

that ©(x)=1if x >0and O(x)=0if x <O.
Finally, evaluating all terms in the above equation, we obtain, for the imaginary MF,

mljwia
Mz(y)=‘8—;2—5— > O(Ep—¢,)0(e, 1, —Ep)
3 (AN n,m
#ifw
1 (e’ —1)
X |(m—y)* T po— T Conimllm =y, /c )O(m —y)
(I—e ¢ ) (e ‘=1
1 (e 7" —1)
+(y ——M)4(1 —ﬁBmc(y—ml) (e—mﬁli‘w( 1 C,,,,,+m((y—m)a)c/cs)9(y—m)
—e _
—yfifw
1 (e " —1)
—(m +y)4 —#Bw (m +y) m#Bw Crz,n+m((m +y)wc/cs) ’ (18)
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FIG. 1. Frequency behavior of M,(w) and M (w), in units of w,, exhibited for different values of the magnetic fields.
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where we have introduced the dimensionless quantity y,
defined as y =w/w,.

On the above equation the first and the second terms
correspond, respectively, to phonon absorption (m >y)
and phonon emission (y >m). Our numerical results
have revealed that the last term in Eq. (18) arising from
emission of phonons with large wave vector is very small.
This shows that the main contribution in this kind of in-
teraction is basically due to scattering by phonons with
small wave vector.® According to Eq. (18) it is easy to
verify that M,(w) has a linear temperature dependence,
for both low- and high-temperature limits, in good agree-
ment with experimental data.'® A similar result for the
imaginary MF part was obtained previously in Ref. 10.
However, it must be emphasized that some physical as-
pects of the 2D EG under the action of a magnetic field
were not taken into account by those authors, e.g., the
existence of some unallowed transitions. Besides, we
have verified that each allowed transition associated with

|
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an initial occupied state n (n >0) gives rise to n dips of
M,(w), in addition to those which occur at y integer and
half-integer (Fig. 3). This as a direct result of the number
of roots of the corresponding Laguerre polinomial,
L"(x),"”” in Eq. (7). Consequently, since the number of
filled Landau levels in the system increases as the intensi-
ty of the magnetic field decreases, a more complex struc-
ture of the MF is expected for the case of lower magnetic
fields in contrast to a singular structure in the quantum
limit case, as can be seen in Fig. 1.

Now we may use the Kramers-Kronig relation in order
to calculate the expression of the real MF part,

My(w')

(w)P—w?’

w o
— ' (19)
M, (w)=2"P [ “dw

where P stands for the Cauchy principal part.
Then, performing the substitution of the expression of
M,(w) on the above equation, we have

ljojay  cw 1 1
= - - O(E.— —
M[(UJ) 4ﬁ2cs5 fO x(x _y)(x +y) x ,,,Em ( F En)e(an-i'm EF)
x#Bw
1 (e ‘—1)
X |(m —x)* yy— .
(1—e (m x)ﬁBwC) (e #B. c—1)
XCp yymlo,/c(m —x))O(m —x)
—x#fw
1 (e ‘—1)
—(m +x)4 —(m ) mifo
(1—e ( +x)ﬁBc) (e ﬁﬁ‘—l)
X Cp, pimlo,/ci(m +x))
—x#ifw
1 —1
+(x_m)4 —(x —m)#fw (e—mﬁBa) )
e c

The numerical results are obtained with the following
set of values for the constants:

¢, =5%X10° cms™!, E,=17.78X10 2 erg,

p=2.33gem™}, d=100 A, 21

m,=0.189m,, n,=4.7X10" cm™2.

e

Our numerical calculation of M,(w) clearly exhibits
both the contributions from the absorption and emission
phonon processes, as is seen in Fig. 1. Furthermore, the
set of nonzero transitions gives rise to a very detailed
structure for M,(w), which is not found in Ref. 10. In
Fig. 1 we show the behavior of the real and imaginary
parts of the MF, for different values of the magnetic field
(H =6.58, 10, and 20 T) and a fixed temperature, T =77
K. We observe that the magnitudes of both M,(w)/w,
and M,(w)/w,, reflecting, respectively, the dissipative
and reactive effects on the electron gas, decrease as the
magnetic field is raised. We can also verify that the num-

XCp, piml@,/cs(x —m))O(x —m)

(1— ‘) (e —-1)

ber of dips at the M,(w) structure increases as the calcu-
lation is performed at lower magnetic field. This is asso-
ciated with the possibility of occurrence of transitions
from higher filled Landau levels in so far as one gets far
from the quantum limit. In our case, with n,=4.7 X 10"
cm 2, the number of completely filled Landau levels is,
respectively, N =1,2,3 for magnetic field intensities
H =20, 10, and 6.58 T.

In Fig. 2 we can see, in detail, the frequency depen-
dence and the structure relations between M,(w) and
M (w) for the case of H=10 T and T =77 K. We can
observe the oscillating behavior of M () and the reso-
nance peaks, for both absorption and emission phonon
processes, around each resonance of integer harmonics.

Figure 3 describes separately each nonzero transition
contribution from the two filled initial Landau levels
n=0and n =1 (H =10 T), to a final state n +m, with
m =1,2,3, as well as the total MF imaginary part, for a
temperature T =77 K. It is easy to observe two principal
peaks, for both phonon absorption and emission contri-
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FIG. 2. Illustration of the relation between the imaginary
part (dashed line) and the corresponding real part (solid line) of
MF for H=10 T and T =77 K, in units of w.. The magnitude
of the phonon resonance peaks decreases as one goes to higher
frequencies.

oo H=10 T
0,1
n T=77K
ol m=1,2,3
osof (c)
B p— o2s|

M2(w)/we

FIG. 3. The contributions to M,(w) corresponding to each
specific Landau-levels transitions (n,n +m). One observes (b)
the appearance of split absorption and emission phonon reso-
nance peaks for transitions from the initial state n >0, e.g.,
n=1and m =1,2,3, in contrast with (a) the single ones for the
nonzero transitions from the lowest Landau level, e.g., n =0
and m =2,3. The total MF imaginary part is exhibited in (c), in
units of w,.
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butions, as well as the appearance of minor peaks strong-
ly related to specific transitions from initial states n > 0.

A systematic study of the temperature dependence of
MF is described in Fig. 4. In general, the magnitude of
the emission and absorption peaks increases as the tem-
perature is raised. Although they have approximately
the same magnitude at high temperatures, in the case of
low temperatures the intensity corresponding to phonon
emission becomes considerably greater than the absorp-
tion peaks, as expected.

Now we use M, (w) and M,(w) in Egs. (12) and (13) in
order to evaluate the dynamical conductivity, o(w). Its
frequency dependence is illustrated by Fig. 5, for both
phonon absorption and emission processes. Further-
more, it is shown the behavior of both real and imaginary
part of o _(w), as a function of the temperature and mag-
netic field, in units of o, which is defined as

n,e’
0= . (22)

myw,

It is worthwhile to notice the occurrence of the split
peaks in the conductivity for low magnetic field, in a
good agreement with experimental results.!® In our ap-
proach, this is a direct result of some Landau-level transi-
tions and we ascribe it as the real description of the unex-
pected splitting of the CR line shape, in a 2D EG, as ob-
served by Schlesinger et al.'® Furthermore, we notice
that the magnitude of the principal subharmonic reso-
nance, i.e., y =1, clearly exhibits a linear temperature
dependence at a low temperature regime. Also, their
magnitude and width decrease as the magnetic field is

77K

Ma(w)/we

w/we

FIG. 4. The temperature behavior of M,(w), in units of w,,
for the case of H=10 T. At very low temperature the magni-
tude of the peaks corresponding to the absorption of phonons
decreases more strongly than the emission ones, but the split
peaks structure remains.
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raised. This result, which seems to be the expected one,
since it corresponds to the electron system becoming
more localized, completely disagrees with the conclusion
of Hu and O’Connell.'° Finally, we want to point out
that the line shape of the CR is quite insensitive to the
temperature, so that the split peak remains in the whole
range of temperature we have used.

IV. FINAL REMARKS

In the present work, we have investigated the role of
the interaction between a two-dimensional electron gas

0.075 1.0
\ (a)
Reo _ (w) |\ H=20T
% \\ T=38K
0.050

0.025

0.14
\
Reo_(w)

%o

0.08
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000

(c)

H=6.58T
\ T=38K

0.08

0.00
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and surface LA phonons, at the presence of a strong mag-
netic field. We have used the memory-function formal-
ism in order to evaluate the temperature and the magnet-
ic field dependence of the magnetophonon conductivity.
In our approach the broadening of the Landau levels
are neglected, so that the conductivity of the system is
derived only by thermal electron excitation of transitions
between Landau levels. In this sense, we have taken care
of some unallowed transitions, reflecting the fact that the
Fermi-Dirac statistics unable the electron to make transi-
tions to states that are already occupied. On the other

0.15 1.0
Imo-(w)
%o
0.10
0.5
0.05
0.00!
o o
0.30 10
\ (e)
\ Imo.(w)
H=10T on
\\ T=77K %
0201\
\
\ ~o.s
ik
AR \
0.10} i\
0.42 1.0
\
\ (f) Imo. (w)
\ H=658T |~ 5
\ T=77K °

0.24

0.06

0.00

FIG. 5. The real (solid lines) and the imaginary (dashed lines) parts of the dynamical conductivity, o _(w), in units of o, for
different temperatures (7 =38 K, 77 K) and magnetic fields (H =6.58 T, 10 T, 20 T).
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hand, we have verified in our calculation that nonzero
transition contributions from initial states n (n >0) give
rise to n dips to the imaginary part of the MF, in addition
to those which occur at the integer resonance harmonics
and half-integer. In spite of that, our systematic study of
cyclotron resonance properties in a 2D EG has revealed a
very peculiar MF structure for both absorption and emis-
sion phonon processes. Furthermore, we have also
verified that the real part of the dynamical conductivity
should always exhibit a splitted resonance peak at lower
magnetic fields, against the single one at the quantum
limit. This interesting result derived from the Landau-
level occupation and the transition contributions may
provide the basis for understanding the similar experi-
mental results obtained by Schlesinger et al.!® Besides,
we have noticed that the magnitude, the width, and the
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number of split conductivity peaks increase as the inten-
sity of the magnetic field decreases. On the other hand,
the splitting effect proved to be insensitive to the temper-
ature, at least in the temperature range we have used.

Finally, it is worthwhile to point out that although we
have performed the calculation of the cyclotron reso-
nance to the case of a silicon MOSFET, there would be
no problems in applying the model to other 2D EG ma-
terials, e.g., Ga,_, Al As/GaAs quantum wells, as well
as to a quasi-1D EG quantum wire, whose calculations
are now in progress.
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