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Infrared-absorption coefficient for shallow donors in a quantum well
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We present a calculation of the absorption coefficient for the intraimpurity transitions between
the first hydrogenlike donor states (n < 3) existing in a quantum well (QW) of finite width, for uni-
form, Gaussian-, and 8-like dopings. The eigenstates are obtained using a variational formulation
with Slater-type functions. In this way we obtain the states 1s, 2s, 3s, 3p+, and 3d2... The obtained
wave functions allow us to calculate the oscillator strengths of the transitions, resulting in the ab-
sorption coefficient, which is in good agreement with the experimental values available in the litera-

ture.

Ga,_,Al,As/GaAs quantum wells (QW’s) are present-
ly a popular system to study transport and optical prop-
erties of a quasi-two-dimensional (quasi-2D) electron gas.
They are generated by several techniques by growing a
layer of GaAs (narrow-gap region) between two layers of
Ga,_, Al As (wide-gap regions). For the undoped case,
defined here as the absence of impurities in the GaAs, the
electron in that region is confined by a potential barrier
at the interfaces but is, nevertheless, free to move in the
plane normal to the growing direction.

During the growth process donors and acceptors can
be made to occur either inside or outside the GaAs layer
in a very well controlled way. For a single donor impuri-
ty inside the well, an additional bound electron state ap-
pears below the first subband of the quasi-2D electron
gas. That state is a hydrogenlike one, as in bulk semicon-
ductors, perturbed by the confining potential in the z
direction. This break in symmetry makes the binding en-
ergy depend on the z position of the impurity. In the low
impurity concentration limit, the so-called dilute case,
those bound states are important in determining the in-
frared properties of the heterostructures. These states
have been extensively studied experimentally by Shana-
brook and co-workers. 2

On the other hand, the calculation of the energy levels
of an electron bound to an impurity in a quantum well
has been performed by many authors. To our knowledge,
the first one was due to Bastard,” who used as the wave
function of the ground state a Slater-type 1s hydrogenlike
function times the wave function of the ground state of
the QW. Using a calculation based on a single variation-
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al parameter he obtained the energy of an electron as a
function of the position of the impurity. Bastard et al.*
also calculated the energy level of the 2p, , states and the
imaginary part of the dielectric function for the transi-
tion 1s—2p, ,. Later, Greene and Bajaj calculated the
impurity energy levels in the presence of a magnetic field,
using a basis of Gaussian-type orbitals.>~7 In a review
article, Shanabrook® lists an extensive bibliography on
hydrogenlike impurity levels. In this work we add to
these results the calculation of the states 2s, 3s, 3p ., and
3d2., using a set of Slater-type wave functions.

The system of an electron bound to an impurity inside
an infinite QW is described by the following Hamiltonian:

2 2
LR R (1)

H:_.
2m* Ku

where u =[x2+y%?+(z—z)*]'/? is the distance between
the electron and the impurity located at (0,0,z;), m* is
the effective mass of the electron, K is the effective dielec-

tric constant, and V(z) is the confining potential:

0 if |z| <L /2

VD)= iflz|>L /2. 2)

Here L is the well width. We assume the donor impurity
located at |z;| <L /2.

In the case of a structure formed by GaAs and
Ga,_ Al As, we neglect the image potential in view of
the small difference between the two dielectric constants
of the materials that form the QW. The wave functions
are built as products of the ground-state wave function of
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the QW times hydrogenlike wave functions. Defining
P,(v)=1+a,(L)w+a,(L)w?+ -+ +a,(LWw" (3

we have, in cylindrical coordinates (z,p, @),

G5 (K, 1) =DPgp(z)P, _(ku)e ", 4)
¢"Pi(K’r):<DSB(Z)Peii¢Pn —olku)e ™", (5)
naz, (k,T)=Dsp(z)p%e 9P, _y(ku)e ©6)
where
—cos | T
(I)SB(Z)“'COS I o

is the ground-state wave function of the QW.

In the above equations we used a single variational pa-
rameter, k. In this paper we do not calculate states as
np, because, as shown by Greene and Bajaj,” they become
unbound as the QW width becomes sufficiently small.
Therefore, we are concerned with states that stay bound
in the two-dimension (2D) limit. These states are labeled
by Ghazali, Gold, and Serre® until n =3.

The coefficients a;(L) are determined in such a way
that we have the correct 2D and 3D limits when L tends
to 0 and o, respectively. For example, the coefficient
a(L) that appears in P (ku) for the wave function
¢, (i, 1) has the limits —2 and —1 as L goes to 0 and <o,
respectively, as we see from the hydrogen wave functions
in 2D and 3D. We have chosen to express these
coefficients as

aj?D-—ajZD aj3D+aj2D
a;(L)= 2 tanh(L —5)+ By (8)
in order to have a good fitting of the limits
a}P=a;(w), 9
a®=a;(0) (10)

when L >>5a* or L <<5a* in each case, where a * is the
effective Bohr radius, which for GaAs is 98 A. However,
we must point out that the results for the energies are not
very sensitive to the choice of the value of L correspond-
ing to the crossing over. But we know that for L = 10a*
the 1s state is already very close to the 3D hydrogen
ground state. In Table I we give the limits of the
coefficients used in this work.

As we must have orthogonal wave functions, we use
the Schmidt process shown below:

\I’ls(r):Als(bls(a’r) ’ (11)
Was (1)= Ay [, (6, 1) —x Wy (0)] (12)
WZpi(r):AZpiqSZpi(‘l/»r) » (13)

W (1)= Ay [dy (7, 1) =AW (D) — W, (D], (14)

TABLE I. Coefficients a;(L) for the limits L —0and L — .

3p

L a¥ ai a3 a; *

_ — 2 1
© 1 2 5 5
0 -2 —4 2 2
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V3, (0= 45, [¢3, (u,1)—€V¥y, (0], (15)
Viar (0= A345, $3a2, (V,1) . (16)

In Fig. 1 we show the energy curves of the levels
s, 2s, 2p4, 3s, 3p4, and 3d2, as a function of z; for L
equal to la*. We notice that the energies of the states
with the same quantum number n are nearly degenerate.
The dispersion in energy decreases as n (principal quan-
tum number) increases. The binding energies of these
states, for impurities at the center of the QW, versus the
well width are in between 2D and 3D limits, as expected
(Fig. 2).

In the dilute regime the optical transition between a
determined pair of states is of the intrasite type, i.e., the
transition occurs between two levels belonging to the
same impurity. In this paper we study the absorption
coefficient for several transitions possible. We are in-
terested, then, in calculating the real part of the optical
conductivity o (w) for these transitions.

Let 0,(z;,w) be the contributions to o,(w) due to an
impurity located at z;, for the transition between the lev-
els m and n by absorption of a photon of frequency o and
whose wave vector is perpendicular to the QW’s wall. We
may write for the transition probability W(z;,®) per uni-
ty time'®

fioW(z,,0)=0(z;,0){E?) . (17
W(z;,w) is given by Fermi’s golden rule,
2
2 —e
Wiz,0)="— A- S(AE(z;)—tiw) ,
(z;,0) 7 <n K e p m> (AE(z;)—fiw)
(18)
where
AE(z;)=E,(z;)—E,(z;) . (19)
100 T T I I
.
>
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FIG. 1. Energy levels of states 1s, 2s, 2p4, 3s, 3p4, and
3d2, for L=1a*. We characterize the s states with solid lines,
p states with short-dashed lines, and the 3d2, state with long-
dashed lines.
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FIG. 2. Binding energies of an electron bound to an impurity
at the center of the QW. (a) 1s state, (b) 2s and 2p 4 states, and
(c) 3s, 3p+, and 3d2. states. The conventions are the same as
above.
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FIG. 3. Absorption coefficient for the 1s—2p.,

1s—3p+, 2p4+ —3s, 2p+—3d24, and 2s5s—3py transitions
with L=1a*. The 2p4 —3s transition is represented by a
dashed line.

As
A(r,1)= Ague'kr—e) (20)

where u is the polarization unit vector for the wave
whose potential vector is A(r,?) and

E 1o
E))=—=——4}, 21
(B)=—% =12 4} @1
after performing a long-wavelength approximation, we
have
2
ol(z,-,a))=7r%a)|u-<n\r|m)IZS(AE(Z,-)—ha)) . (22)

To obtain o,(w), we must sum up the contributions of
all impurities located in the QW. For the distribution of
impurities P(z;) we have

2
ol(w)ZW%wffzz/zP(zi)|u~<n|r|m ME
XS(AE(z,)—#w)dz; . (23)
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FIG. 4. Absorption coefficient for the 1s—2p transition
with Gaussian (solid line) and 8-like (dashed line) distributions
for the doping width d =0.02a * and z,, =0.25a *.
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But 5 I I T ] 1 I 1 ] 1 I 1 I 1 I T l T I T [ T
S(AE(z)—Fi) =S e o (24) i ]
Z)—hw)= s - — —
’ ~ | dAE(z,) = 4
- *\ - .
dz; AE(z))=to > 3| ]
where z; is the value of the continuous variable z such x| A
that AE(z)=%o. Then N _
o2 P(z))|u-{n|r|m)|? L i
ow)=rT—0w (25) =
K 4 |dAE(z) Al = —
dz; AE(z)=1i B . -j]l;\ 1
] ! pene ol [ Ii-kad 1y
Calling 0809 1 11 12 13 14 15 16 17 18 19
»*
lu-Cnlelm Y 2=T,, (AE(z,)) (26) AE(Ry*)

and remembering that AE(z;) is an even function, we
have

2
Ul(w)Zv%wD(ﬁa))T,,m(ﬁw) , 27)

where D(#w) is the joint density between the states n and
m. We see then that o,(w) is obtained by weighing the
D(#iw) by the oscillator strength of the transition.

In this work we analyze three types of doping. First,
the uniform one:

P(z)=— . 28)
Figure 3 shows o (w) for the ls—2p,, 1ls—3p,,
2py—3s, 2p,—3d2,, and 2s—3p, transitions with
L=1q*.

As we can see, each transition presents two peaks. The
peak corresponding to the highest energy is due to transi-
tions occurring in the middle of the well. It is a conse-
quence of the singularity of the joint density of states in
that energy. The secondary peak comes from the impuri-
ties located at the edges of the well. The 1s—2p, and
1s —3p. transitions are broader than the others. Com-
paring our results with those experimental results ob-
tained by Shanabrook and co-workers!! for the transition
1s —2p. for the zero-magnetic-field limit, we obtain an
error smaller than 4%.

Other types of doping are the Gaussian- [P;(z;)] and
8-like [Pg(z;)] ones. We take distributions centered in
z,,, with the width d, that is,

2 2(21' T Zm )2
PG(zi)Zmexp —T—} y (29)
1/d ifz,—d/2<z;<z,+d/2
Ps(z;)= [O otherwise . (30)

FIG. 5. Absorption coefficient for the 1s—2p transition
with Gaussian distribution for doping widths d =0.1a* (dashed
line) and d =0.01a * (solid line), both for z,, =0.25a *.

The o,(®) for the 8-like distribution looks like a piece of
o (w) for the uniform one, while for the Gaussian distri-
bution we have a Gaussian structure. As we see in Fig. 4
these absorption coefficients do not present peaks, unless
the doping is in the middle of the well. If the doping
width becomes very narrow, there is an appearance of a
peak, as is shown in Fig. 5. This fact suggests the
manufacture of QW’s with a sharp absorption spectra.

The energy levels have been obtained by a single-
parameter variational calculation. The advantage of this
strategy is a simplification on the integrals of energy and
normalization constant as well as the computation of the
extremes. In fact, the time spent in a two-parameter cal-
culation increases without significant progress in calcula-
tion for the 1s state.!> The price to be paid is the appear-
ance of some strange features in one of our curves, as we
can see in Fig. 3 for the absorption coefficients for the
2p . — 3s transition, for L =1a *.

Summarizing, in this work we report on the results ob-
tained for the absorption coefficients for three different
types of impurity distributions on a QW. We have found
that the absorption coefficients are strongly dependent on
the analyzed impurity distributions. It is interesting to
point out that a sharp peak is observed for this coefficient
when the width of the distribution becomes thinner.
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