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Many-body renormalization of phonon frequencies, due to their interaction with a high-density
electron-hole plasma, such as the one created by an intense laser pulse applied to GaAs, is calculated.
Results for the change in phonon-dispersion curves are obtained, both for a distribution characterized by
zero carrier temperature and for the electron-hole plasma equilibrium temperature. We use a many-
valley model for the conduction and valence bands of GaAs, and the deformation potentials available
from the literature for the carrier-acoustic-phonon interaction. We do not find complete softening of the
phonons below the experimental electron-hole pair density (< 10?2 cm~3), although zone-boundary pho-
non softening is observed at (1-5)X 10*2 cm 3. From the increase in the mean squared amplitude of the
atomic vibrations caused by the phonon softening, we obtain an effective lattice melting temperature
which decreases with increasing carrier temperature. Thus, a nonthermal electronic mechanism could at
best play only a partial role in semiconductor laser annealing experiments even on ultrafast sub-

picosecond time scales.

The effect of free carriers (electrons and holes) on the
phonon properties in a semiconductor is substantially
smaller than the effects of phonons on the electronic
properties. This is due to the small ratio of the electron
mass to the ionic mass. However, electronic renormaliza-
tion of phonon properties increases with increasing car-
rier concentration, which can be varied by orders of mag-
nitude in a semiconductor and one therefore has a con-
trol parameter to make these effects stronger. One way
of controlling this concentration is by doping; there have
been numerous studies, both theoretical and experimen-
tal,! of the changes in the lattice properties such as elas-
tic constants and sound velocities in semiconductors
caused by doping. The interpretation of the results is
complicated by the difficulty in separating the effects of
the free carriers from that of the dopant ions. Another
way is by photoexciting electron-hole pairs. The larger
the intensity of the radiation and the smaller the tem-
poral resolution of the experiment, the more noticeable
these effects of electronic renormalization of phonon
properties become.

In fact, it was once conjectured that pulsed laser an-
nealing of semiconductors would occur by an electronic
mechanism called “electronic laser annealing,” consisting
in the photoexcitation of a large number of free carriers
which screen the electron-phonon interaction, thereby
weakening the interatomic forces so that the atoms could
rearrange themselves in a time too short for the lattice to
heat up.? In light of much experimental evidence it is
now widely accepted that the actual annealing mecha-
nism is the usual thermal one with the direct transfer of
heat from the photoexcited plasma to the lattice, raising
the lattice temperature to its melting point.> More re-
cently, experiments involving ultrafast irradiation of bulk
GaAs with 0.1-ps laser pulses associated with the ob-
served loss of crystalline order within 0.2 ps of excitation®
have revived interest in nonthermal mechanisms of laser
annealing. The effect of a large concentration of
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electron-hole pairs on the phonons in silicon was earlier
calculated by Biswas and Ambegaokar,® by directly di-
agonalizing the dynamical matrix to obtain the phonon
frequencies with the effect of the electron-hole plasma be-
ing introduced in the model through a dielectric function
that interpolated between the ground-state (insulator)
dielectric function of the semiconductor and that of a free
electron and hole gas. Their method, however, is not
easily related to the usual treatment of the electron-
phonon interaction in semiconductors using the deforma-
tion potential.

These considerations have motivated us to revisit the
laser-annealing problem and to calculate the self-energy
renormalization of the GaAs phonons due to their in-
teraction with a high-density electron-hole plasma. We
describe the electronic structure of GaAs by a multivalley
model, taking into account contributions from a I' valley,
four L valleys, and three X valleys in the conduction
band; and from a heavy-hole (hh) and a light-hole (lh) val-
ley in the valence band. The phonon propagator for a
given phonon mode is renormalized by the effect of the
acoustic-phonon—electronic-carrier interaction through
the deformation potential and is given by® the dressed
propagator
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is the squared deformation potential matrix element for
interaction with a single valley, p the mass density of the
semiconductor, and o, the “bare” phonon frequency,
which is the phonon frequency in the electronic ground
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state in the absence of any free electrons or holes.
The sum in Eq. (2) is over all the wvalleys of
GaAs (v=I,L,,...,L4,Xy,...,X5,hh,1h). For the
conduction-band valleys the coupling to the strain tensor
s;; is given by

3 3
DU:EdU 2 sii+Euv 2 kivk

i=1 ij=1

s (3)

joSij
where =, and =, are the two deformation potential
coupling constants for the ellipsoidal valley v, and k, are
the vectors from the I' point to the valley minimum. For

the valence band valleys, the couplings are given by
3
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where a, b, and d are the deformation potential coupling
constants for the valence band, and the plus (minus) sign
applies to the heavy-hole (light-hole) valley. The strain
associated with the phonon mode of direction § and po-
larization P is

s;=1(piq;tp;q:) - (5)

The materials parameters, in addition to the mass density
and dielectric constant, are the valley minima energies,
the effective density-of-states mass per valley, and the de-
formation potential constants. The values selected from
the literature’ !' that we use in the calculations are
shown in Table I.

Free carrier effects are contained in the polarizabilities
X,(g,®) and the dielectric function e(q,®). The renor-
malized phonon frequencies are given by the poles of Eq.
(1), and since the phonon frequencies of interest are much
smaller than the electronic energy scales (energy gap,
effective Fermi energy, plasmon frequencies, etc.), we
make the usual static approximation Y(q,0)=x(gq,0)

TABLE 1. Materials parameters used in the calculations
presented in this paper.

Deformation
Type m/mg E i €V)? potentials (eV)*

r 0.063* 1.424 =,=—17.5
L 0.227 1.708 =,=—22.0 =,=39.2
X 0.41?2 1.900 =,=—16 zZ,=—63
lh 1.47° 0 a=—4.8
hh 0.43° 0 [ b=-2.0

d=—5.4

3From Ref. 7, and for T =300 K; m is the density-of-states mass
per valley.

Since we are concerned with high hole concentrations, and to
take into account the warped form of the valence bands, we use
these high values of my;, and my,, proposed by Reggiani (Ref.
8).

‘See Ref. 9.
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=x(q) and e(q,w)=¢(q,0)=e(q), thus obtaining for the
renormalized phonon frequencies

0Xg)=wl—0gq) ©6)
with
Q*g)=p 'eq) 3 D,q’x,(q) . (7)

The contribution of each valley to the polarizability
X,(q) is calculated in the Lindhardt approximation, and
depends only on m,, the density-of-states mass per valley,
and n,, the concentration of carriers in the valley. The
dielectric function is given by

} (8)

and includes the effect of a g-dependent ground-state (i.e.,
without any free carriers) dielectric function gy(q). The
latter is usually approximated by a constant €,=¢,(0) in
many-body calculations, but because we are interested in
obtaining results across the Brillouin zone (BZ), we retain
the g dependence and use an approximate form for g4(q),
obtained by fitting Srinivasan’s results'? for GaAs which
are based on the Penn model for a spherical BZ (whose
radius we choose to match the volume of the actual
GaAs BZ).

At this point it is worthwhile mentioning that in the
limit of small g the second term in Eq. (8) must dominate,
and the self-energy correction becomes quartic in g:
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and, in the case of a doped semiconductor with only one
valley occupied,
=2, 4
Qg == . (10)
dme‘p

Corrections to the sound velocity can occur only at
nonzero q > q,, i.e., when the carrier concentration is low
enough for the Thomas-Fermi screening wave vector (g,)
defined by

q2=—4me*x(0) (11)

to be smaller than gq.

The evaluation of the free carrier response function
X,(g) requires a knowledge of the actual (intravalley and
intervalley) carrier distribution. The present method of
calculation allows one to use as input an arbitrary distri-
bution of the carriers within a valley and among different
valleys as obtained from nonequilibrium calculations,
and, therefore, the model can easily be extended to in-
clude a time-dependent calculation of the dynamics of
photoexcited electron-hole plasma in a semiconductor.
Here we assume that the carriers can be described by an
equilibrium Fermi distribution with an effective carrier
temperature 7, and we obtain results in two extreme
cases: T=0, with a common Fermi level for all the con-



49 ELECTRON-HOLE PLASMA-DRIVEN PHONON RENORMALIZATION. . .

duction valleys and a different Fermi level for the holes;
and T =T, where T is the temperature for an equilib-
rium electron-hole system, specified by electrons and
holes having the same chemical potential. These are two
simple extreme cases which catch the essence of the phys-
ics we are interested in.

In Fig. 1, we show the bare and renormalized phonon
dispersion relations along the principal symmetry direc-
tions for n =10% cm ™3 electron-hole pairs, assuming an
equilibrium electron-hole distribution (i.e., T =T,). The
results for the T =0 distribution are almost indistinguish-
able on this scale from the results shown. For this very-
high-density electron-hole plasma the first mode to be
driven to zero frequency is the (100) TA phonon at a den-
sity around 1.5X10* pairs cm 3. For T =0 (and
presumably for any intermediate effective temperature
0=T=T,,) the instability also occurs at the BZ edge.
This feature is consistent with the results obtained in Ref.
5 by an entirely different method.

It is reasonable to ask whether this electronic plasma-
involved weak phonon renormalization contributes
significantly to lattice melting. To quantify that contri-
bution, we consider the real-space vibrations of the lattice
atoms. Since little is known about the details of bulk
melting anyway, we use the simple Lindemann criterion
which relates the amplitude of the real-space vibrations
to the melting temperature. By this criterion, the solid
will melt when the average squared amplitude of the vi-
brations, given by

n( T]at’(‘)q )

(u?)(Ty,)=(const) X ¥ ———— , (12)

q Wq

reaches a certain specific value, which occurs at
T\i =Ty, the melting temperature of the solid
(Tyy=1513 K for GaAs). Raising T, the lattice temper-
ature is one way of increasing the amplitude of the vibra-
tions; another way is lowering the phonon frequencies.
We plot in Fig. 2 the calculated squared lattice vibration-
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FIG. 1. Bare (solid line) and renormalized (dashed line) pho-
non dispersion relation along the [100], [110], and [111] direc-
tions. The renormalized curves were obtained using the equilib-
rium electron-hole distribution (the results with the T =0 distri-
bution are almost indistinguishable from those in this scale).
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FIG. 2. Average squared amplitude of the atomic lattice vi-
brations as a function of electron-hole pair concentration for
several values of the lattice temperature, normalized by the
same amplitude, but calculated at zero carrier concentration,
and, at T =T,,=1513 K, the melting temperature of GaAs.

al amplitude {u?) as a function of carrier concentration
for several values of the lattice temperature including the
effects of phonon softening by the plasma. The integra-
tion over the BZ in Eq. (12) is obtained by a weighted
average of the integrals along the three principal symme-
try directions. We find from these curves that, for exam-
ple, at a free carrier concentration of n =3X10?! cm 3,
the restoring forces have become small enough for the vi-
bration amplitudes at T),,=0.9T,, to be as large as the
ones corresponding to the melting of the semiconductor
in the absence of the free carriers. This gives an
effectively reduced melting temperature in the presence
of the free carrier plasma. (Thus, for n =3X10%! cm ™3,
the effective melting temperature is reduced by 10% due
to the free carrier renormalization effect.) All the curves
eventually diverge at the above-mentioned critical carrier
concentration where the frequency of a particular pho-
non mode is renormalized down to zero, making the lat-

1,00 (o e
+ g
0.90 :
8 _
= F
~ 0.80f —
€
= + N
-
0.701 i
PP RS S
0802 10%! 1022 1028
n (cm™>)

FIG. 3. Shows an “effective melting temperature,” Ty (n),
obtained by applying the Lindemann criterion to the lattice at
300 K, but taking into account the softening of the phonons due
to the presence of n electron-holes per cm ™3, and for the two
cases of carrier distribution considered (as described in the text).



2446

tice soft.

One can calculate the decrease in the melting tempera-
ture, as given by the Lindemann criterion, caused by the
increase in the carrier density due to this phonon renor-
malization effect. One sees from the calculated results in
Fig. 3 that the effects of large but reasonable carrier con-
centrations (of the order of 10*! cm™?) are insignificant,
and this “effective” melting temperature only becomes of
the order of room temperature (300 K=0.20T,, for
GaAs) for electron-hole concentrations large enough for
the occurrence of the BZ edge phonon instability anyway.
Thus, while the free carrier plasma-induced phonon re-
normalization may play a small quantitative role in laser
annealing, the main mechanism must still be the direct
transfer of heat from the incident radiation field to the
lattice without any interesting electronic mechanism. We
do, however, expect the effect of the free carrier plasma
on phonons to increase with a decrease in system dimen-
sionalities and, therefore, it is possible that in lower di-
mensional semiconductor quantum wells (or quantum
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wires) one may see an enhanced role of the electron-hole
plasma.

The results of this simple calculation are that nothing
spectacular seems to happen in the phonon spectra of
GaAs at the attainable concentrations of electron-hole
pairs. It is clear that if a plasma mechanism is invoked*
to explain the results of femtosecond pulsed laser experi-
ments in GaAs, care must be taken to consider carrier
distributions radically different from the quasiequilibri-
um, effective-temperature models considered here. In ad-
dition, the coupling of intervalley phonons to the elec-
trons (I'-L, T'-X, X-X, and L-L) must be taken into ac-
count. We speculate, however, based on our results that
it is unlikely that an electronic mechanism plays a
significant role in the bulk laser annealing of GaAs under
any (reasonable) circumstances.
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