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Comprehensive computer simulations of a tracer particle hopping in a lattice where the sites could be
either empty or occupied by one or two background particles are performed using a standard Monte
Carlo technique. The results for the diffusion coefficient are compared with those of a mean-field theory
derived from a random-walk approach. The blocking effects due to dynamical background particles are
obtained exactly. The correlation effects due to many-particle interactions are analyzed qualitatively.
This kind of double-occupancy model can be applied to the study of ionic conduction in glasses.

I. INTRODUCTION

For many years various tracer diffusion models in a
disordered lattice have been intensively studied' and been
applied to a wide range of physical situations. The case
of bond disorder has been considered by Webman,? while
Perondi and Elliott have recently discussed a special
model of topological disorder.® Site disorder in the
mathematically similar case of magnets was treated some
time ago.* More realistic theoretical models of disorder
are untractable by analytic methods, due to many-body
effects which, in general, are not correctly accounted for
in any mean-field approximation. However, most of the
experimental probes are not sensitive enough to en-
courage a more quantitatively predictive model. In these
models one usually considers a single-particle hopping
from a site to one of its unoccupied neighbors at a given
rate. The presence of other particles will diminish the in-
dividual probability of a given jump. As a consequence,
the diffusion coefficient will also be diminished. On the
one hand, this arises because of the dynamical blocking of
available sites for the tracer by the mobile background
particles, and on the other hand, there appear correlation
effects due to the fact that successive tracer jumps are not
statistically independent. (The reason for this depen-
dence is that the site left behind after a jump is empty
with probability 1, while the other neighboring sites
could be occupied by background particles.)

This complex many-body problem only admits suitable
approximate solutions in the limits of low concentration
(single particle) or high concentration (single vacancy) of
particles. These limits are attainable by a linear decou-
pling procedure of the equations of motion for the
relevant generating functions® or by random-walk ap-
proach.6 In the intermediate-concentration region, one
would have to devise a reasonable interpolation scheme.’
With random-walk techniques one finds mean-field values
of the diffusion coefficient that agree extremely well with
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other much more complicated interpolation schemes or
numerical simulations.’

These techniques could also be applied to the case in
which a given lattice site could be occupied by more than
one particle. Such an extension is relevant when studying
transport of ions in glasses, such as (1—x)B,0;+xLi,0,
in which experimental data suggest that there could be
more than one ion bound to a negatively charged site in
the lattice.® This is to be expected because there are usu-
ally as many ions as there are available sites provided by
the host material.” A model of diffusion allowing double
occupancy of sites has been applied'® to the case of ion
conduction in borate glasses.!! The success of this appli-
cation suggests that double occupancy is more important
than the topological disorder of the glass. The model
uses mean-field expressions for the effective hopping
rates, derived from a master equation and random-walk
technique.

Although in the mean-field approach the correlation
effects are not properly accounted for, its results are
reasonably good. Therefore it is desirable to make a com-
parative analysis of these predictions using Monte Carlo
results, which is the main purpose of this paper. The
model used for ionic conduction in glasses'® includes pos-
sible variations in the barrier heights due to a Coulomb
repulsion of two particles occupying the same site. It
also includes variations in the attempt jump frequencies
for doubly occupied sites. Furthermore, one also makes
an assumption that there could be various types of nega-
tively charged centers, i.e., some random static defects
need to be included. Such a complicated situation is
difficult to reproduce in a computer simulation. For-
tunately, the basic hypotheses to be tested by the simula-
tion can be investigated with a simpler model, in which
one assumes that doubly occupied sites only induce a
change in the hopping rate. This basic model is analyzed
here analytically and numerically.

This paper is organized as follows. First, the model is
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explained, the mean-field expressions are derived, and a
qualitative interpolation scheme is devised for calculating
the correlation effects between the two extremes of parti-
cle concentration. Then the characteristics of the numer-
ical simulations are presented followed by a comparison
with the theoretical results and a discussion. Finally,
some conclusions are drawn.

II. MODEL AND MEAN-FIELD TREATMENT

In a perfect hypercubic lattice, a process in which a
single classical particle performs a random series of hop-
pings between nearest-neighbor sites is characterized by a
diffusion coefficient

1’z

D, 3d J, (1)
where [ is the hopping length, d is the number of spatial
dimensions, Z is the number of nearest neighbors, and J
is the hopping rate. If one considers that the time spent
in a jump is much shorter than the mean residence time
in a site, the process takes place in thermal equilibrium.
Therefore the hopping is thermally activated and
J=vexp(—AE /kT), where v is the attempt jump fre-
quency. In the many-body case we consider a relative
concentration of particles ¢ =N, /N, where N, is the to-
tal number of mobile particles and N, is the number of
lattice sites. As mentioned earlier, dynamical blocking
and correlation effects change the jump probabilities and
result in a lower value for the tracer diffusion coefficient.
In order to distinguish between these two effects, it is
convenient to write the diffusion coefficient for the
many-body system as

D=fyfcDy 2)

where f), is a blocking factor and f. is a correlation fac-
tor. f, is defined by the ratio between the number of suc-

cessful jumps and the total number of attempted jumps.
J

d{n,(i))
dt
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This can be calculated exactly by counting all the possible
local configurations. Note that by definition all many-
body correlations are included in f,. Then a mean-field
approach for the diffusion problem will give f, exactly,
since in that case one neglects correlations. However, the
calculation of f, requires an approach beyond the mean
field, as will be discussed later.

A. Blocking factor

Let us start with the uncorrelated case (f,=1) and as-
sume that at every site of the lattice there is a probability
ng, ny, or n, for it to be occupied by zero, one, or two
particles, respectively. The tracer particle could only be
located in a vacant site, with probability P, or in a singly
occupied site, with probability P,. Then we assume that
the hopping rates are J and J' for making a jump away
from a singly or doubly occupied site, respectively. In
this case the averaged hopping rate of the tracer is

JO=P J+P,J 3)
and the blocking factor is
fr=(1=n,)J°/J forJ>J',

@)
fo=0—n,)J%/J" forJ <J',

since diffusion is dominated by the largest of the hopping
rates. Likewise, D, in Eq. (2) now includes the largest of
the hopping rates.

For a concentration ¢ of background particles, proper
normalization gives

n;=2—c—2n, and n,=c—1+n,, (5)

where ¢ could vary between O and 2. The equilibrium
value of the site occupation probabilities can be found by
considering the master equation for any n;, from which
one derives the rate equation

=3 [J{n,(ng()) +20 (ny(ng(i)) +2J'Cny(idng(j) ) +20' (ny(idny ()
J

=J{ny(Dng()) =T (ny(Dny () =T Cny(Dn () =20 n (D, () ], (6)

where ( - - - ) means an average over the distribution of
configurations at a given time. This equation can be visu-
alized with the help of Fig. 1, where all the possible situa-
tions for a particle hopping between two sites (i and j)
are shown. The four diagrams in Fig. 1 correspond ex-
actly to the positive terms on the right-hand side of Eq.
(6). The negative ones can be obtained from this figure by
reversing the time. Notice that the situations in which
the jumping particle is initially in a doubly occupied site
have to be multiplied by 2, since the particle that per-
forms the jump is indistinguishable. Similarly, equations
may be obtained for d{n,(i))/dt and d{ny(i))/dt.
After a long time, the system will approach the steady
state (dn, /dt =0), and in this regime the distribution is
canonical and thus it is clear that {(n,(i))=n, is the
same for all sites. Since the total energy of a given
configuration only depends on the single-site occupation

FIG. 1. Diagram that shows all the possible situations for a
single jump between sites i and j. If time ¢ is before time ¢’,
these diagrams correspond to the terms with + sign in Eq. (6),
and the negative terms there are obtained by reversing the time.
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probabilities, the partition function can be factorized and
the multiple-site averages can be decoupled into products
of single-site averages. Therefore the steady-state condi-
tion reads

2nynd' =niJ , )

which could be combined with Eq. (5) to give

dP,
t
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po—2a+(1=c)2a—1)=V2a—(2a D1 —c)’
0 2(2a —1) ’

where a =J /J'.

A rate equation for the tracer can be obtained also
with the aid of Fig. 1, except that one has to treat the
tracer as a distinguishable particle. In this case one ob-
tains

(8)

—= I [J{(P,(jIng(i)) +T' (P, (j)ng(i)} + T {Py(i)ng(j)) +J ' (Py(i)n,(j))
j

—J{P(Dny(j)) —2J{P(Dn(j)) =2 {P(i)n,y(j))] . 9

The equilibrium condition now reads
2P(an,+n,)=P,(2ny+n,), (10)

which can be solved with the normalization condition
(P, +P,=1)togive

_ 2ny+n,
P,= . (11
2(an,+n,)+2ny+n,

This completes the exact calculation of the blocking
factor in Eq. (4). As seen in Eqgs. (6) and (9), the rate
equation for a single-site average involves two-site aver-
ages, and the equation of motion for the two-site averages
involves three-site averages, and so on, forming a
hierarchical set of equations. Therefore the solution of
the complete correlated dynamics calls for an approxima-
tion. The mean-field result is obtained when one decou-
ples the set of equations to the first order, thus ignoring
correlations. For this reason the blocking factor can be
calculated exactly as shown above.

B. Correlation factor

Next, we will briefly discuss the role of correlations at
the single-particle and single-vacancy limits. After that
we attempt to devise an interpolation scheme for inter-
mediate particle concentrations. In the single-site occu-
pancy case (lattice gas model),*¢ it was found that decou-
pling the hierarchical set of equations to second order
gives the leading contribution to the correlation factor.
Thus good approximations in the extreme limits of parti-
cle concentration were obtained. This was also necessary
for devising a reasonable interpolation scheme at inter-
mediate particle concentrations. In the double-
occupancy case, the single-particle limit (¢ =~0) can be
described exactly using the same ideas as in the lattice
gas model. There are three types of sites with zero (0),
one (1), and two (2) background particles. Sites (1), al-
though mobile, do not cause correlations to the tracer
motion, but affect the average hopping rate of the tracer
[J°=J(P,+P,/a)]. Therefore sites (2) are the only and
direct cause of correlations. The detailed dynamics of
these two-particle complexes could be very complicated,
but their average concentration is fixed and known.

[

Therefore, if one assumes that these complexes move like
rigid objects with hopping rate J’, the system becomes
effectively a lattice gas model. As a consequence, one
would use the single-particle limit expression as derived
for the lattice gas model either by decoupling the equa-
tion of motion to second order’® or by a random-walk ap-
proach.®

In the single-vacancy limit (¢ =2), we consider a situa-
tion in which all sites but one are doubly occupied. Now
the lattice gas picture is not appropriate, because the va-
cancy could move through the tracer site either by ex-
changing places with the tracer or with the companion
particle. Thus the hopping rate of the vacancy is 2J'.
Using random-walk theory, one now obtains

1 + 4 cosb,

¢ 1—1lcos6, ’ (12)
where cosf, measures the imbalance between forward
and backward jumps in a random walk.'? In this paper
we shall compare this result with simulations in two di-
mensions where cosf,=2/7—1=—0.36338. Note that
apart from 7 in front of the cosines this result is the same
as obtained for the lattice gas using either the decoupling
scheme® or the random-walk approach.® This is under-
stood because the vacancy exchanges places with the
tracer at the rate J', while the vacancy can return from
such a site with the rate 2J".

As a first attempt to devise an interpolation scheme of
f. for all intermediate concentrations, one is tempted to
use a Tahir-Kheli- and Elliott-like expression®

r=li- 2J°%n, cosé(c)
¢ (J'+J%1—n,)} {1+ cosB(c)}

(13)

Note that in this expression we emphasize the concentra-
tion dependence of cos, because the value of this imbal-
ance measure in the single-vacancy limit is half of that in
the single-particle limit. The simplest assumption for the
functional form of cosf(c) is the weighted average

P, cos6y+ (P, /2a)cosb,
J°/7

Enl coseo+§

cosB(c)=
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It is noted that there is obviously room for improving this
scheme. For example, one could introduce self-
consistency by defining a mean-field diffusion coefficient
containing f,. However, in the double-occupancy prob-
lem correlations are expected to be less important than in
the simple lattice gas model. Thus we do not pursue this
matter further.

III. NUMERICAL SIMULATIONS

In the numerical simulations a standard random-walk
Monte Carlo method was used.” The simulations have
been performed in a square lattice of size I, XI; with
periodic boundary conditions for various fixed values of ¢
and a, chosen to span the parameter space thoroughly.
The first step is to set up the initial configuration of the
system. In some preliminary calculations the vacant
sites, the singly occupied sites, and the doubly occupied
sites were distributed at random, obeying the constraint
in Eq. (5). After a fair number of Monte Carlo steps
(defined below), the resulting probabilities of occupation
were always very close to the equilibrium values given by
Egs. (5) and (8). Therefore the final results of the simula-
tions do not depend on the initial configuration. In order
to speed up the calculations, the equilibrium numbers for
each value of ¢ and a were chosen to give the initial
configuration for the simulations. Then one labels all the
particles and performs a series of Monte Carlo steps in
the following way.

One selects a particle at random and also one of its
nearest-neighbor sites and tests if the site is doubly occu-
pied, in which case the particle cannot move and the
configuration of the system is kept unchanged. If the
neighbor is not doubly occupied, then on identifies the
site occupied by the particle. Here one needs to be care-
ful, because the time scale that defines a Monte Carlo
step per particle (MCS) is different for a > 1 from that for
a<1. When a >1 and if the particle is in a singly occu-
pied site, it moves to the neighbor site. If the site is dou-
bly occupied, then one generates a random number (m)
within the interval (0,1) and compares it with 1/a. If
m <1/a, then the particle moves; otherwise, it does not
move. In contrast, when a <1 the inverse is true, that is,
if the site is doubly occupied, the particle moves to the
neighbor site, and if it is singly occupied, then one com-
pares a with a random number m: if m <a, the particle
remains in the site; otherwise, it moves.

This procedure is repeated N, times, defining the time
unit of 1 MCS. In the simulations, I, =100 was chosen,
i.e., N,=10% which according to our earlier experiences
is large enough to render very small finite-size effects.’
Moreover, it was found that 2000 MCS for most pairs
(a,c) gave a sufficiently long time to very accurately
determine diffusion coefficients and various factors in
them. As for the random number generation, the R250
shift-register generator was used.!> This routine is
known to produce very good pseudorandom numbers.

In order to explore a wide range of values in the pa-
rameter space (a,c) and to prevent unnecessary calcula-
tions, two sets of simulations were made, one for a few
extreme values of ¢, spanning a wide range of values for
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a, and another with a restricted range of a’s and covering
all the range of variation in c. In the first set we chose
c——01 1.0, and 1.9, for @ = 5, 75> 70 B B T T

, 1,3,5,7,9, 50, 100, 500, and 1000. In the second set
we took the restricted set of 12 values of a between 4 and
9 and varied ¢ =0.3, 0.5, 0.7, 0.9, 1.1, 1.2, 1.3, 14 1.5,
1.6, 1.7, 1.8, and 1.95.

From the simulations one can obtain the equilibrium
probabilities of site occupation n;. After each MCS one
counts the number of vacant, singly, and doubly occupied
sites and scales by N,. Then one averages over the last 50
MCS to ensure good approximations for the equilibrium
values. The blocking factor f is calculated according to
its definition, that is, by counting the number of success-
ful jumps and dividing by the total number of attempts,
which is N, times the number of MCS. The averaged
hopping rate (J)=(1—n,)J° is obtained by multiplying
the correlation factor by the largest of the J’s according
to the definition in Eq. (3).

The diffusion coefficient for the many-particle system,
and thus the correlation factor f,, can be calculated after
each MCS from the mean-square displacement

(R == S [ —xo P+ iyl (19
P
where (x(;,y,;) are the initial configuration coordinates
of particle i. Because of the periodic boundary condi-
tions, one has to add up a hopping length / each time a
particle crosses a boundary. Performing a least-squares
linear fitting within the range of MCS from 500 to 2000,
one gets the slope which yields directly 2dD /Z, where D
is defined in Eq. (2). To obtain £, one divides D by {(J ).

IV. DISCUSSION

The results of the simulations can be compared with
the theoretical predictions of Sec. II. In Fig. 2 the depen-
dence of the probabilities of occupation, n;, on c is
shown. It is found that the theoretical predictions of Egs.
(5) and (8) and the points from the computer simulations
agree perfectly well, within the precision of the simula-
tions, for all values of (a,c). (A fair estimate for the error
bars in all the figures is less or about the size of symbols
in them.) This means that the mean-field approach and
the master equation that gives the equilibrium condition
in Eq. (7) produce the exact result. Furthermore, the
theory also gives exact results for the equilibrium values
of the tracer probabilities, since the predictions from Egs.
(10) and (11) agree perfectly well with the Monte Carlo
simulations throughout the parameter space. An exam-
ple of this is shown in Fig. 3, where the concentration
dependence of the average hopping rate (J ) is compared
with the simulation points for selected values of a. By
looking at these results, one can be convinced that finite-
size effects, usually found in Monte Carlo simulations, are
not jeopardizing the accuracy of the numerical calcula-
tion.

The blocking factor is obtained exactly with the
theoretical model even for extreme values of a. In Fig.
4(a) one can notice a complete agreement between the
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Monte Carlo simulations and the theoretical predictions 357 EPE e N 1
in a wide range of values of a. 3t yd ) ]
The effects of correlations in the diffusion coefficient i s X '
are shown in Fig. 4(b), where one can observe deviations 25‘} \
of the numerical calculations for D from the f.=1 case 2L yd ) '
(shown by the lines in the figure). These are particularly A ‘[ B
important when a is very different from 1, and the devia- Y st e )
tions are more pronounced for larger values of ¢, as ex- It -
pected. One can also note some fluctuations in the nu- K : :
merical results (see, for instance, the point at ¢ =0.7 for 05+ - -~ i . - 1
a =1), due to the fact that for some extreme values of the \ B A T
parameters, there occur very few jumps even for a large 00; 02 04 06 08 1 12 1L 16 18 2

number of MCS.

In Fig. 5 the results for f, obtained with the Tahir-
Kheli- and Elliott-like interpolation scheme of Eq. (13)
are shown as a function of ¢ for selected values of a and
they are compared with the results of the Monte Carlo
simulations. It is seen that the theory agrees well with
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FIG. 2. Dependence of the site probabilities of occupation on
the concentration of background particles (a) for vacancies, (b)
for singly occupied sites, and (c) for doubly occupied sites. The
squares are the results from the computer simulations, and the
lines are the theoretical predictions from Egs. (5) and (8). The
values of a =J /J' are § (solid lines), £, £, 1, 1,3, 5,7, and 9.

FIG. 3. Dependence of the average hopping rate on the con-
centration of background particles. The simulation points are
shown fora =1 #),a=1(+),a=1(MW),a=5(X),anda =9
(A) . The predicted values from the theoretical model are
shown with lines.
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FIG. 4. Theoretical dependence of the averaged hopping rate
(J) on the ratio of hopping rates a shown for three selected
values of the concentrations of background particles: ¢ =0.1,
¢=1.0, and ¢ =1.9. In (a) the corresponding points (diamonds,
crosses, and squares) from the simulations are shown and agree
with the results from Eq. (3). In (b) the results for D =f.{J)
are shown.
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FIG. 5. Correlation factor as a function of the concentration
of background particles calculated with Eq. (13) (lines) and from
the numerical results. The symbols for the simulation points
are the same as in Fig. 3.

the numerical results only for low values of a, as expect-
ed. This is because in the limit J'— c« only the particles
in doubly occupied sites diffuse and there are very few of
them, and thus the correlation factor is nearly unity for
concentrations lower than 1. As a increases, so does the
number of doubly occupied sites and the interplay of
singly occupied sites affects the correlations in an impor-
tant way. In the limit of large a, the doubly occupied
sites are nearly stationary, an in this case a better descrip-
tion of the dynamics could be made by considering nor-
mal diffusion of particles in a lattice with a random distri-
bution of static blocking defects. All the theoretical
curves in Fig. 5 approach the same value when ¢ =2 ir-
respective of the value of a. This is given by Eq. (13) as
f.(c =2)=0.6925, and it is suggested that the numerical
results agree with it. This is to be expected, because in
this limit diffusion could be described simply by consider-
ing a single-vacancy hopping in a full lattice, and the
correlation effects can be calculated from purely geome-
trical considerations.!* Note that the same limit in the
lattice gas model, i.e., no double occupancy, is
f.=0.4669, obtained from Eq. (13) using cosf, instead of
1cosf. In Fig. 5 the curves for large a =J /J' extrapo-
late linearly to this value. Then one realizes that the
minimum displayed by this curve is a consequence of the
competition between the two terms in Eq. (14).
Furthermore, Fig. 5 demonstrates that the single-
interpolation scheme does not agree quantitatively with
the numerical results. However, the qualitative behavior
is reproduced. The physics behind this behavior is that
there are two possible local environments for a tracer-
vacancy exchange, with different dynamics: tracer alone
in a site and tracer sharing with another particle. Each
environment gives a different value of cosd. Thus the in-
terpretation of the observed behavior of f, is as follows.
For low values of ¢ the great majority of tracer-vacancy
exchanges take place with a tracer alone site, as in the
lattice gas. As c increases, the shared sites increasingly
dominate the dynamics, and eventually one approaches
the single-vacancy limit of the double-occupancy model.
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FIG. 6. Comparison of the theoretical D = f.{J) [where f,
is calculated with Eq. (13)] and the numerical results for D as a
function of the concentration of background particles. The
selected values of a and the symbols are the same as in Fig. 3.

As for the turning point in f, it is natural that for larger
a values doubly occupied sites are less mobile, and thus
their effect becomes more apparent for larger ¢ values.

In most practical cases, one does not measure tracer
diffusion but chemical diffusion of particles, which differ
in principle by correlation effects. Even in the case when
one measures tracer diffusion—for example, in transport
of radioactive particles—the deviations detected in the
present work are not likely to be resolved in a real experi-
ment. To illustrate this point the calculated diffusion
coefficient using Eq. (13) is compared with the numerical
results in Fig. 6 as a function of particle concentration.
It is seen that both results agree remarkably well for
moderate values of a.

V. CONCLUSIONS

There are some important conclusions drawn from this
work. First, one should be reminded about the fact that
in the diffusion coefficient the geometrical blocking effect
can be separated from the many-body correlations. This
is based on the observation that in the rate equation (6)
multiple-site averages can be separated into single-site
averages without any loss of generality, as in any system
where the total energy only contains sums of single-
particle energies. This in turn makes the mean-field
theory exact for the site occupation probabilities n; and
tracer particle occupation probabilities P; and then for
the blocking factor f,.

Second, it should be pointed out that the Monte Carlo
simulations corroborate the theoretical results without
correlations very accurately, with a minimum of finite-
size effects. Thus our simulation scheme can be con-
sidered trustworthy for most of the parameter space and
can then with confidence be used to study many-body
correlation effects for which there is no exact theory.

However, in order to account for these correlations, a
suitable interpolation scheme was developed using a lat-
tice gas approximation, from which a Tahir-Kheli- and
Elliott-like equation was derived. Although this scheme
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does not give good quantitative agreement with the nu-
merical results, it gives the salient features of the correla-
tion factor qualitatively correctly. The small and large
limits are found exactly, and a very good approximation
for the corresponding slopes (df./dc) is obtained. To
make the picture about the correlation behavior com-
plete, some limit values of a were also discussed. First,
when @ —0—i.e., the jumping rate from doubly occupied
sites dominates strongly— f, would be 1, until ¢ reaches
2, when it should suddenly go to the value 0.6925.
Second, when a — o0 —i.e., doubly occupied sites would
stay static— f, would seem to go monotonically toward
the value 0.4669, given by the lattice gas approximation,
but at ¢ =2 it should attain the value 0.6925 again. It is
pointed out that although there is a discrepancy between
theoretical and numerical results in the correlation
behavior, it would be expected to fall below the experi-
mental resolution of any practical measurement of the
diffusion coefficient. Finally, in order to connect the
present calculations with ionic conduction in borate
glasses,10 it should be pointed out that the tracer
diffusion coefficient differs from that defined by ionic con-
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ductivity, their ratio being called the Haven ratio.'> This
ratio is significant if correlation effects are important.
However, in glasses with low alkali ion content the
Haven ratio is nearly 1. Therefore correlation effects are
not important and the mean-field approach of this paper
should be valid.
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