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Surface diffusion in the low-friction limit: Occurrence of long jumps
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We present a molecular dynami@dD) study of a Brownian particle in a two-dimensional periodic poten-
tial. For a separable potential, the study of the diffusion constant along the symmetry directions reduces to two
one-dimensional problems. In this case, our MD study agrees with the existing analytical results on the
temperature and the frictiony) dependence of the diffusion constabt)( For a nonseparable and anisotropic
potential such as the adsorption potential on a(tb@ surface, the present study predicts an alternative
D~ 1/%°% dependence in the low friction regime as opposed toQhel/sn dependence found in previous
studies of one-dimensional or separable potentials. We find that the dependéhamof in the low friction
regime is directly related to the occurrence of long jumps. The probability for the long jumps depends not only
sensitively on the value of the friction but also on the geometry of the surface. On ttiel@csurface, the
path connecting adjoining adsorption sites does not coincide with the direction of easy crossing at the saddle
point. Consequently, the probability of deactivation is enhanced, leading to the reduction of long jumps and the
different dependence @ on 7. [S0163-182806)09035-3

A variety of phenomena in physics and other fields can bdluid. As the temperature is lowered, there is a crossover to
modeled as Brownian motion in an external poteritfaDne  the thermal activated behavior. In this low temperature re-
particular example is the diffusion of adsorbed atdimda- gime, diffusion proceeds by uncorrelated jumps over the bar-
toms on solid surfaces.In this case, the problem can be rier from one adsorption potential well to another, and the
described by a Langevin equation for the adatom, or, equivatemperature dependence of the diffusion constant obeys the
lently, a Fokker-Planck equation for the distribution function well known Arrhenius form, with the diffusion barrier deter-
in the phase space. For the one-dimensididl) system, mined by the difference in the value of the adsorption poten-
analytical solutions have been achieved for the Langevirial between the saddle poif®D) or the barrie1D) and the
equation or the equivalent Fokker-Planck equafichHow-  well. The prefactor in front of the exponential, however, con-
ever, an analytical solution of the 2D Langevin equation,tains the real dynamical information. In general, it depends
particularly in the low friction regime, poses a considerableon the value of the friction which characterizes the strength
challenge. It has only been accomplished in the special cag¥ the coupling to the substrate excitations. In the high fric-
of separable potentials containing no cross terms dependirtipn regime,D decreases with frictiony asD~ 5~ *. This
on both Cartesian components of the adatom displacemehghavior follows from the fact that the probability for the
vector® In this paper, we present a molecular dynamicsparticle to recross a barrier increases with increasing value of
(MD) solution of the Langevin equation describing the the friction. For intermediate values of friction, the transition
Brownian motion of an adatom in an arbitrary 2D adsorptionstate theory(TST) is approximately valid and the prefactor is
potential. This method is particularly well suited for the low then determined entirely by equilibrium quantities and does
friction regime, thus making it complementary to the matrixnot depend on the friction. In the low friction regime, the
continued-fraction-expansion approaéfiwhich works well  activation rate of escaping from the well decreases with de-
in the high to intermediate friction regime. We will show creasing value of the frictioh.However, the deactivation
below that in the low friction regime, the variation of the rate also decreases witfy which implies a larger probability
diffusion rate with the friction parameter depends crucially ~of long jumps. In fact, it has been shown that for a 1D or a
on the details of the adsorption potential, and the result de2D separable potential system, the activation rate goes as
rived for 1D or the special 2D separable potentials is not~ », while the mean square jumping displacement behaves
applicable to the case of arbitrary non-separable 2D poteras ~ 1/7% in the limit —0. This then leads to the depen-
tials. dence of the diffusion constant on the friction in the form

We first consider the qualitative features of the BrownianD ~1/7.5® The occurrence of these long jumps in the low
motion of the adatom. At high temperatures, the effect of theemperature regime has been observed in previous MD simu-
periodic adsorption potential is negligible and the motionlations as well as in a number of experiments designed to
reduces to the case of free Brownian particle in a viscousneasure surface diffusidf:}* We expect now that for a gen-
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eral 2D potential, most of these qualitative considerations T

would still hold true with one noticeable exception. While szf dt(vx(t)vy(0)),—.co

the activation rate and the recrossing rate depends only on 0

the local properties near the minimum and the barrier, the ;

deactivation rate and hence the probability of the long jumps Dy:f dt(vy(t)vy(0)), e . (5)
should depend sensitively on the global geometry of the sur- 0

face. This could be seen from the fpllowing consiQeratjonsm the above equations, the thermal statistical avexage
The adatom crosses the saddle point along the direction feans average over the initial conditions and over the sto-
the steepest descent. For a general 2D adsorption potenti@lyasiic paths obtained by numerically integrating the Lange-
this does not coincide with the direction joining two adjacent, i, equationg(1) and (2).

minima of the adsorption potential. The adatom would then Considering that the deterministic forcésU and d,U
have to bounce around in the next adsorption well beforgemain approximately constant in a short time interval
acquiring the right direction for the next crossing. This ré-(t,t+dt), the Langevin equation€l) and (2) can be inte-

quired change of direction obviously enhances the deactivayrated with the random forces treated exactly. Then the al-
tion rate and lowers the probability of long jumps relative togorithm can be written a8

the 1D or 2D separable potential. Similar effects originating

from the nonseparability of the normal and in-plane motion X(t+dt)=x(t)+c,dtv,(t) +cdt?a(t)+ 6x%,  (6)
have been noted by several authtir§® The effect also

should be strongly dependent on the geometry of the surface. y(t+dt)=y(t)+c,dtv (1) + czdtzay(t) +6y®, (7
Thus, the primary focus of the present MD study concerns

the diffusion anisotropy and the dependence of the long v, (t+dt)=cqu,(t) +cdta(t)+ 5u§’, (8)
jumps on the friction in a nonseparable 2D potential. In what
follows, we first describe the formulation of our MD simu- vy(t+dt)=covy(t) +c dtay(t)+ 5v$, (9)
lation. Then we compare numerical results for a 2D system

of separable adsorption potential with known analytic results’ here

as a check of the accuracy of our numerical procedures. The ¢ —g-7dt ¢ —(1—cy)/5dt, c,=(1—cy)/7dt.

main body of our results are obtained for a 2D nonseparable (10)
potential having the symmetry of a H&@d 0) surface. For this G .G G -G ) ,

system, we present numerical results of diffusion constant€X -9y~ andév,’,évy’ are, respectively, the displacements
along two principal axes for various temperatures and &nd velocity components caused by the random forces
range of friction values. To illustrate the sensitive depen<x.&y. ox® and dvy, are Gaussian and correlated, with vari-
dence of long jumps on the surface geometry, we preser@nce matrix elements,

data for probability vs jump displacements, activation rate vs

friction, and mean square.jum_p d[splacement_s Vs friction: <5x(35xG>=dt2kB—T[2—(3—4c0+cé)/77dt]/7;dt,
Consider an adatom diffusing in a 2D periodic potential m
U(x,y). The adatom’s coupling to the substrate excitations is (11)
characterized by a constant frictiopn We assume that the T
time scale for the substrate excitations is much shorter than <5UG5UG>: i(l—cz) (12)
that for the adatom so that memory effects can be neglected. X m o
We describe the motion of the adatom in terms of the Lange- T
vin equation, (5xCoug)=dt——(1-c)?/ ndt. (13)
mX(t) = — d,U(X,y) — pX+ &(1), 1 L , _
® W OGY) = xt & @ An identical form of variance matrix holds for the correlated
. . H H G G
my(t) = —a,U(X,y) — ny+ &(1), ) Gassian variablesy™ and év,’.

We first verify the accuracy of our MD simulation ap-
where m is the particle’s mass and andy, the displace- proach by performing calculations for the separable potential
ments. The Gaussian white noiség, and §,, have zero
{ZWX) {ZWy)
2—co§ —|—co§ —
a a

mean and the following correlations: U(x,y) =V,
(Eun (D& (V') =KeT (=), (&(D&(t )>_O’(3) wherea is the lattice constant. The diffusion barrier for this
potential A equals 2/, and the bare frequencies of the two
with kg the Boltzmann constant anidthe temperature. The frustrated translational modes, and w, both are equal to
diffusion constants along theandy axes are related to the w,=2u/a\Vy/m. In this case, the motion along thedi-
mean square displacements as rection is separable from the direction as is visible from
) ) curvature lines ofJ(x,y) illustrated in Fig. 1. Our MD simu-
D :<X (1) :<y (1) lation for this potential recovers the results of previous stud-
X 2t Hw’ y 2t | ies using the matrix continued fraction expansion methd.
At low temperatures, diffusion proceeds by thermally acti-
Equivalently, they can be expressed in terms of the Laplacgated jumps across the saddle points. The temperature de-
transform of the velocity-velocity correlation function, pendence of the diffusion constant conforms to the Arrhenius

. (19

(4)
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FIG. 1. A separable periodic potentidl(x,y). The potential is

FIG. 3. A nonseparable periodic potentlal(x,y) of bca110
scaled by the diffusion barrier. P o P (x.) o110

surface symmetryscaled by the diffusion barriger

exponential form(Fig. 2). As discussed earlier, the depen- Wherea is lattice constant. The axis is along the(001)
dence of the prefactor on the friction divides into three direction whiley axis is along thg110) direction. This po-
regimes. At high friction values such thatwy>1, we have tential is illustrated in Fig. 3. The saddle points are located at
D~ 1/5. At low friction value such thaty/wy<1, we also  (xs=ma/2,ys=na/+/2) with arbitrary integersn,n. The po-
have the dependend®~1/%. In the intermediate regime tential wells are located at[xy=(m+1/2)a/2,y\
around the value ofp/wy~1, the prefactor varies more =(n-—1/2)a/\2] and [Xw=(m—1/2)a/2,y\,=(n
slowly as a function of friction compared with the other two +1/2)a/\/2] while the maxima occur at[xy=(m

U(X,y)=V| 1+sin , (15

diffusion constant

regimes.The value of the diffusion constant in this regime isy- 1/2)a/2 y,,= (n+1/2)a/\2] and [xy=(m-1/2)a/2,yy
centered at the TST resu=(wq/2m)a’e”**e". This is  —(n_1/2)a/\2]. The diffusion barrierA for this potential
the regime where neither significant recrossing nor longg equal toV, and the bare frequencies of two frustrated
jumps occur and_ where the error of TST is .minimized. translational modes have the frequencies=w, and
We next conS|d'er a nonseparqble potential of the symme@y:wo/Z’ respectively. As is visible in Fig. 3, the principal
try that is appropriate for adsorption on a b)) surface,  ayes of the curvature matrix of the potential at a saddle point
are not aligned along the well-saddle point-well line or the
2mx\ [2my maximum-saddle point-maximum line. For this nonseparable
= |5 J2a potential, our MD results for diffusion constarils, andD,,
vstemperaturel and friction % are plotted in Fig. 4.
First, we examine the temperature dependence of the dif-
10 . . fusion constant. At very high temperaturgs. k;T> A, the
effect of the periodic adsorption potential is negligible. The
diffusion constant is isotropic and takes on the familiar form
Dy=Dy=kgT/7 which is characteristic of the motion of a
free Brownian particle. At low temperatured. ksT<<A, the
particle resides in a potential well for most of the time and
diffusion is dominated by thermal activated crossing over the
saddle points from one well to another. In this case, the ratio
between the mean square displacements along thied y
axis is determined by the symmetry and equals 1/2. Conse-
quently, at low temperatures the ratio of the the diffusion
constants along the andy directions reach asymptotically
the geometrical ratio 1/2.
Next we consider the dependence of the diffusion con-
stantD (which stands foD, or D,) on the friction# in the
low temperature regime. Again, the dependence can be clas-

0.001 - ' sified into three regimes in a manner similar to the case for
0.01 0.1 1 10 the separable potential. The high fricti@h~1/7 and the
friction approximate TST behavior in the intermediate friction re-

gime are parallel to those for the separable potential and have
FIG. 2. Diffusion constanD/wqa? vs friction 7/ w, for inverse  the same physical origins. In the low friction regime where
temperaturg8A=0.1 (top), 0.3 (secony, 4 (third), 5 (fourth), and  7/we<<1, we find a new behavior. Instead of tie~1/7
6 (bottom). dependence, our MD data in this regime indicates a friction
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D~ 1/7°% of the diffusion constant on the friction as ob-
10 . . served in our MD simulations.

To demonstrate explicitly the picture presented in the last
section. We examine in this section the probability of the
. occurrence of long jumps in the low friction regime. This is
1 . done via two separate approaches. The first is by direct ex-

amination of the trajectories generated in our stochastic dy-
namics simulations. To count the number of jump events
from numerical trajectories, we need a criterion to identify
0.1 B ™ the start and the end of a jump. Naturally, at low tempera-

: AN tures, a jump starts when the particle acquires an energy
greater than the diffusion barriér, and the end of the jump
) should be when the adatom loses its memory of the previous
0.01} . T N motion. The actual moment of the loss of memory is numeri-

cally hard to pinpoint exactly. We have identified it as the
point when the energy of the adatom drops to a value of
O\ 3kgT below the saddle point. The exact choice of this cutoff
' TR energy below which we identify the adatom to have suffered
001 01 1 10 memory loss is somewhat arbitrary. In fact, the choice of
friction 2kgT as a cutoff in this case yields identical results for de-
termining the jump events. We have also tried counting jump
FIG. 4. Diffusion constants along principal axeB,/wqa® events with a velocity criterion. In this case, a jump event
along (001 (dashedi and D, /woa® along (110) (solid) vs friction  ends when the velocity component aloag11) or (111)
nl w, for temperatures\/kgT=1.3 (top pai), 2.55(second, 3.75  reverses its sign. This is less plausible as a link to the loss of
(third), 4.95(fourth), and 6.15(bottom). memory compared with the energy criterion. The energy and
the velocity criteria actually yield different values for the
dependence of the for@~1/7°% That is, the value of the activation/deactivation rate and the mean square displace-
diffusion constant increases more slowly as a function oinents of the jump events. However, when the diffusion con-
decreasing value of the friction relative to that for the sepastant is calculated as a product of the activation rate and the
rable pOtentiaL This behavior stems from the nonalignmenh']ean square disp|acement3, the two criteria y|e|d the same
of the principal axes with the easiest diffusion path throughegylt.
saddle pOintS. After CfOSSing the saddle pOint along the path Experimenta”y, |Ong jumps have been observed either di-
of the Steepest descent, the adatom has to Change directionr%tly or deduced by Comparison with a random walk theory
the new well region before finding its way to cross the nextinyolving jumps of different lengths. In the first category is
saddle pOint as i||ustl’ated, for example, in F|g 5. This re-the STM measurement by GanaLlO The |Ong Jump in this
quired change of direction between sequential crossings ove¥xperiment is defined based on the residence time in a well,
saddle point enhances the probability of deactivation anghamely, a jump is considered to have ended when the adatom
equilibration of the adatom. Consequently, the probability ofstays in a well longer than some typical timeomparable to
occurrence of long jumps is reduced relative to the situationhe observation time amd much longer than a vibrational
of 1D or separable potential where no change of directiorheriod 14, This definition of long jump does not necessar-
between sequential crossings of saddle point in a long jumily coincide with that based on the loss of memory, although
is necessary. This ultimately leads to the weaker dependenggey are qualitatively similar. The second category of experi-
ment compares physical observable quantity with the corre-
10 } } , , , sponding theoretical expression in a random walk model in
which the adatom performs uncorrelated jumps of various
lengths'*® For example, the quasielastic peak width in the
151 ] dynamic structure factor is given in the random walk model
by the expressidfi

diffusion constant

>0 P(K)=2y2 P(ry)[1-008K Iyl (16
251 ] Here, y is the total jump rate. Thu®(r, ,) can be obtained
by a back Fourier transform of the obsendé¢K). Numeri-
cally, this provides yet another way of finding both the jump
-30 - - ‘ - - rate and the relative occurrence of jumps of different lengths.
1015 20 25 30 35 40 The procedure is first to evaluate the dynamical structure
x factor numerically and then subtract off a slowly varying

background near the quasielastic peak. This background
FIG. 5. A typical jump trajectory. A/kgT=6.15 and comes from vibrational contributions and is not included in
1l wy=0.01875. the expressioi’' (K) discussed above. One can then evaluate
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FIG. 6. Jump probability for the separable potential. The param- FIG. 8. Same as Fig. 7 except=0.150,

eters areA/kgT=3.9 and%=0.150,. The diamonds are for data

extracted from the dynamic structure factor and the crosses for that .
! . ) . ing data. Again, results from the two approaches agree well
from direct counting of the molecular dynamics trajectory.

with each other. Moreover, in both the separable and the
nonseparable casel,P(r,,)=2,P(r,n) as required by
the surface symmetry. Comparing Fig. 8 with Fig. 6, for the
same frictiony=0.150,, we conclude that the probabilities
of long jumps for the nonseparable potential are significantly
Yess than those for the separable potential.

I'(K) as a function oK and back Fourier transform to ob-
tain P(ry, ,). This provides an alternative way of studying
the long jumps without the somewhat uncertain criterion o
determining the end of a jump event. For the separable p

tzenlglal in Eq. (1;)’. Wz bhave com%ted the tpro?abnltyd Now, we focus on the dependence of the long jumps on
nP(fm,n) vSm obtained by means of dynamic structure an the value of friction. In Fig. 9, we plot the activation rate

by means of direct counting using the energy criterion. Thq‘riction and, in Fig. 10, the mean square jumping displace-

results are plotted in Fig. 6. It is seen that the jump prob- I -
: ments vs friction. These results are obtained for the non-
abilities P(ryp,) [rmna=(mana0)] obtained by the two VS et . !

metho_ds agree well With each other. For the nonseparab%i?;ﬁ?r:?ngp%eengzldlrl)fE ;q:lyﬁ)mupsg\\g/;e::eﬁ?: géisg:%r;]o?aigr
potential in Eq.(15), a jump of some arbitrary unijscan be evaluated by counting the total
number of jumps of all lengths in an unit time interval. The
temperature is chosen such thetkgT=6.15. We find that

the activation rate here has the same dependence on the fric-
tion as in the situation for the separable potential. The results

. R ... in Fig. 9 show that the activation rate is proportional to the
{111) axis. Plotted in Figs. 7 and 8 are the probability value of friction in the limits— 0. As the jump occurs over

2nP(fmp) vSM extrgcted from the_ dynamic structure factor through saddle points at low temperatures, the mean square
and the corresponding value obtained from the direct count-, —

displacement along110) axis is twice of that along001)

a a a
2722

Fmn=mMm

aaa
2'2°2

goes overm saddle points ananTl} axis andn along

5.~ $ 107 T
107
2 e
g : S
° c
= .
2 S 108} .
=210 s ©
2
+ . "5
©
10 : - : ' 5
0 2 4 6 8 10 10 L !
jump displacement (lattice sites)
0.01 0.1 1
FIG. 7. Probability of jump as a function of distance projected friction
along the(111) direction for the nonseparable potential. Results are
from direct jump counting based on the energy criterilime with FIG. 9. Activation rate(arbitrary uni} vs friction z/w, as ob-

diamond$ vs that from the dynamic structure factécrosses tained through MD simulatiofsolid curve. The dashed line is the
A/kgT=6.15. Friction=0.0187%0. linear behavior for comparison.
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FIG. 10. Mean square jumping displacemetisit a%) along
(001 axis vs friction /wq (solid curve. The dashed line is the
1/7*® behavior for comparison.

axis as determined by the surface geometry. However, the
dependence on the value of friction differ significantly from
the separable potential case. Both mean square displa

ments are proportional to 4} («=0.5) in the limit fric-

tion »—0. This is in direct contrast to the 1D or separable
potential case where the mean square displacement assum

C

D~ 1/7°% as discussed earlier. Thus we have confirmed ex-
plicitly our earlier assertions that the probability of the long
jumps for the nonseparable 2D potential is different from the
separable case because of the geometrical deactivation fac-
tor. The result that the mean square displacement should in-
crease slower than thes# in the limit 7— 0 should be quite
general for all nonseparable potentials. However, we expect
the degree of the enhanced deactivation behavior to be sen-
sitive to the shape of the potential, and hence the value of the
exponent 0.5 in the behaviolr~ 1/%7°° should not be uni-
versal.

In summary, we have presented a MD study of diffusion
of a Brownian particle in two-dimensional periodic poten-
tials. For a separable potential, our study recovers the results
obtained through analytical approaches. For a nonseparable
potential, our MD study yields new predictions on the fric-
tion dependence of diffusion constant in the low friction re-
gime while it agrees with the existing literature in the inter-
mediate to high friction regimes. Our MD study also predicts
that the probability for long jumps depends sensitively on the
ﬁurface geometry as well as on the value of the friction. We
can make a general conclusion that compared with the results
%J_r a separable potential, the nonseparable adsorption poten-
tial leads to a reduction in the probability for long jumps and
a weaker dependence of diffusion constant on the value of
ttég friction in the low friction regime.

~1/%? form.The dependence of the activation rate and the We thank Dr. P. L. Nash for helpful discussions. This
together leads to the result for the diffusion constantwork was supported in part by a grant from ONR.
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