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Abstract. In this paper, a review of Synthetic Aperture Radar (SAR)-based techniques, for oil slick
at sea observation is proposed, focusing in particular on polarimetric approaches. In fact, marine oil
pollution monitoring is a topic of great applicative and scientific relevance and in such a context, among
all remote sensing sensors, SAR represents a fundamental tool due to its almost all-weather and all-day
imaging capability, providing synoptic maps of the observed scene with a fine spatial resolution and a
dense revisit time. Although traditionally SAR-based techniques for oil pollution observation rely on
automatic or partially supervised classifiers applyed on single-polarization SAR imagery and based on
image processing algorithms, in the last decade the growing number of fully and partially polarimetric
data available from several polarimetric SAR sensors offered an unprecedented amount of physical
information about the scattering mechanisms ruling the interaction between the observed scene and
the SAR illumination. Hence, a set of polarimetric approaches that exploit the oil-covered sea surface
departure from Bragg scattering, which characterizes the scattering from a slightly rough surface as
the slick-free ocean one, have been developed. Polarimetric SAR observations represent a significant
improvement allowing to distinguish oil slicks from look-alikes (low-wind areas, biogenic films, etc.)
and to avoid or reduce the need of trained personnel and external information (optical and scatterometer
data) required for single polarization SAR-based techniques.
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1. Introduction

Oil pollution is a matter of great concern: every year 180 millions US gallon of crude oil
are spilled into the sea (DELILAH, 2002; ITOPF, 2007). Spilled oil modifies marine ecosystems
altering fish life-cycle with hard aftermaths for human health. Mineral oil spills are mainly due
to intentional polluters, i.e., vessels which get benefits in illegally discharging oil waste (oily
ballast waters, tank washing residues, fuel oil sludge and bilge discharges) (UNEP2014, 2014), or
to accidental disasters as the Transocean Deepwater Horizon (Gulf of Mexico, 20 April 2010)
and the Prestige (Galician coast, 19 November 2002) cases. In 2013, 7 spills of at least 60 US
gallon of various mineral oil types have been recorded, 3 of which have been reported as large
spill (> 6,000 US gallon). Nonetheless, historical databases show a decreasing trend for large oil
spills (from, in average, 25 large oil spills occurred in the decade 1970-1979 to the 5 recorded
in the 2000-2009 decade), while the majority (81%) of the nearly 10,000 annual accidents falls
into the smallest category (< 60 US gallon) (ITOPF, 2013). Those considerations witness that
a continous and effective oil spill surveillance is needed to effectively plan proper and timely
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countermeasures to minimize pollution effects, i. e., the use of dispersants, and to operationally
support law enforcement and early warning systems for hazards management, catching in the
act the polluters and timely identify them to be prosecuted.

The remainder of the paper is organized as follows: in Section 2, a brief review of the single
polarization Synthetic Aperture Radar (SAR)-based remote sensing for oil pollution monitoring,
together with the rationale lying at the basis of SAR capability to observe oil slicks over ocean
surface is presented, describing the most employed single polarization techniques that have been
proposed in literature with their underpinning ideas, especially focusing on main drawbacks
that have to be taken in account when dealing with single polarization SAR imagery; in Section
3, the theoretical background on which rely polarimetric SAR-based approaches for oil slick
observation is described, analyzing in detail the set of the most used polarimetric features and
discussing their capability to detect and classify oil slicks; conclusions are drawn in Section 4.

2. Single Polarization SAR-based oil spill observation

Spaceborne remote sensing and aerial surveillance represent key tools for an operational

oil pollution monitoring. In fact, when dealing with oil slick at sea observation, a wide
area coverage together with a fine spatial resolution and a dense revisit time are required
to monitor huge marine areas in case of oil fields or large oil spills, to ensure a timely
identification of illegal polluters and to plan proper countermeasures. From this point of
view, being a microwave, active and coherent high-resolution imaging sensor, SAR represents
a non-cooperative system that can operate almost independently on atmospheric conditions
(rain, cloud-cover) allowing day- and night-time measurements perfectly matching the afore-
mentioned constraints and overcoming traditional issues of in situ techniques (i. e., coast guard
and surveillance aircrafts), usually non cost-effective. Nevertheless, it should be underlined
that although SAR ensures a very improved spatial/temporal coverage providing, after proper
processing, synoptic maps of the observed area (MIGLIACCIO et al., 2012), it can not provide
reliable estimates of oil thickness.
Basically, SAR can observe oil slicks over the ocean surface due to the oil capability to reduce
the friction velocity, responsible of the energy exchanges between sea surface wind and ocean
waves, and to dampen the short gravity and capillary waves, i. e., the Bragg resonant centimetric
waves responsible of the backscattering signal measured at the SAR antenna (MIGLIACCIO;
GAMBARDELLA; TRANFAGLIA, 2007). Hence, the reduced ocean surface roughness results in a
low backscattered region appearing, in gray-scale SAR imagery, as a darker area with respect to
the sea background. Operationally, SAR-based oil pollution monitoring can be achieved only
when low-to-moderate wind conditions apply (wind speed between 3 and 15 m/s (BREKKE;
SOLBERG, 2005)). In fact, wind speed has to be sufficiently high to produce ocean waves
responsible of backscattering, but not too strong to avoid producing dispersion and water/oil
mixing phenomena that make thin oil slicks at sea practically invisible. Nonetheless, low-
wind ocean areas (LW) are characterized by very small surface roughness that similarly results
in dark patches in SAR imagery. Furthermore, there is a large variety of features, termed
look-alikes and including rain cells (RC), ship wakes (SW), oceanic currents (C), biogenic
surfactants, upwelling zones, etc. that for different reasons appear as dark areas in SAR imagery
producing false positives (FINGAS; BROWN, 1997; MIGLIACCIO; GAMBARDELLA; TRANFAGLIA,
2007; NUNZIATA; SOBIESKI; MIGLIACCIO, 2009). In Fig. 1 some examples of look-alikes are
shown. They hamper the visual interpretation of SAR imagery making oil pollution monitoring
based on single polarization SAR data a very non trivial task, although in some cases the
expertise of trained personnel or the use of external ancillary information, i.e., scatterometer
local wind measurements and optical data, can strongly support it.
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Historically, single polarization SAR-based techniques address oil slicks monitoring using
an image processing approach based on a 3-step procedure (MIGLIACCIO; GAMBARDELLA,;
TRANFAGLIA, 2007; GAMBARDELLA et al., 2010), as shown in Fig. 2(a). Once detected
dark areas possible candidates to be oil spills using segmentation, active contours tracing or
neural network-based alghoritms (FRATE et al., 2000; SINGHA; BELLERBY; TRIESCHMANN, 2013;
GARCIA-PINEDA et al.,, 2013; HUIHUIL; BO; KAIHUA, 2013; TARAVAT; LATINI; FRATE, 2014), an
unsupervised or partially supervised classifier is accomplished. It is based on the computation
of a set of radiometric, geometric and texture features extracted to assign a certain probability
that the considered dark area is a on oil spill. The key point relies in the features set choosen
to analyze the morphological complexity of dark patches (SOLBERG, 2012), which depends on
oil composition, amount and shape, on the kind of the releasing source (stationary as drilling
platforms and pipelines or moving as tankers and vessels) and on weather conditions as sea
surface temperature, wind field and oceanic currents. In particular, weather conditions play an
important role in the life-cycle of the oil spill ruling processes like evaporation, emulsification
and dispersion (SOLBERG et al., 1999). In Fig. 2(b)-(d) typical outputs of automatic classifiers
are shown. However, it is important to underline that such classifiers, sometimes referred
as automatic, in real cases have to be supported with external information (about the local
wind field and the sea state from scatterometer or buoy data, and about the accurate location
of metallic targets within the observed scene) to be reliable for a timely and effective oil
spill detection, and in few cases they are able to discriminate oil slicks from look-alikes.
Hence, although sometimes unsupervised, they often need the expertise of trained personnel
providing visual inspection. Moreover, no physical characterization or a very limited one is
integrated in the processing chain. More details regarding the automatic classifiers for oil spill
detection purposes that have been proposed in literature can be found in (SOLBERG et al., 1999;
BREKKE; SOLBERG, 2005; NIRCHIO, 2005; KERAMITSOGLOU; CARTALIS; KIRANOUDIS, 2006;
MERCIER; GIRARD-HARDUIN, 2006; SOLBERG; BREKKE; HUSOY, 2007; BREKKE; SOLBERG,
2008; GAMBARDELLA et al., 2010).

In literature, a completely different rationale has been followed for oil slick detection and
classification from single polarization SAR imagery. It has a physical nature relying in
statistical or scattering models of the ocean surface which account for slick-free and a slick-
covered sea surface scenarios. In (MIGLIACCIO; GAMBARDELLA; TRANFAGLIA, 2007), a 3-
parameters distribution family, namely the Generalized-K, is employed to model the speckle
of low backscattering areas in Single-Look Complex (SLC) SAR data. Although such a model
allows to detect dark areas, it is not able to provide an oil/look-alike discrimination and its
performance stongly depend on the statistical parameters estimation. In (NUNZIATA; SOBIESKI;
MIGLIACCIO, 2009), a 2-scale approach to model the sea surface scattering with and without
oil slicks is followed and validated over C- and L-band Multi-Look Complex (MLC) SAR data
using the Boundary Perturbation Model (BPM) as a good benchmark between accuracy and
time-consuming. It provides a contrast model which predicts an oil slick backscattering lower
than the surrounding slick-free background due to the capability of an oil slick to reduce the
ocean surface roughness and the friction velocity, shortening the sea spectrum and shrinking
the statistical distribution of the slopes.

3. Polarimetric SAR-based techniques for oil spills monitoring

In last decade, the growing availability of dual- and full-polarimetric data from a set of
airborne and spaceborne SAR sensors operating at different frequencies and polarizations
allowed the strong development of polarimetric models and analysis tools to observe oil slicks
at sea. In literature, spaceborne and airborne full-polarized L-band SAR acquisitions from
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the Japanese ALOS-PalSAR (MIGLIACCIO et al., 2009) and the NASA UAVSAR (MINCHEW;
JONES; HOLT, 2012), respectively, full-polarized C-band measurements from the Canadian
RADARSAT-2 (MIGLIACCIO et al., 2011a; ZHANG et al., 2011) and dual-polarized X-band data
from the German TerraSAR-X (VELOTTO et al., 2011) have been exploited for this purpose
since they provide an unprecedented amount of information about the scattering mechanisms
of the observed scene, allowing the classification of dark areas in single polarization SAR
imagery (MIGLIACCIO; GAMBARDELLA; TRANFAGLIA, 2007; MIGLIACCIO et al., 2011b, 2012).
Several polarimetric features measuring the correlation between the co-polarized HH and VV
channels, the amount of unpolarized backscattered energy, the scene depolarization capabilities,
etc. have been successfully employed to both observe oil slicks and distinguish them from
weak damping look-alikes. They all share a common physical rationale relying on the different
scattering mechanisms ruling the electromagnetic behaviour of oil-covered and weak damping
slick-covered sea surface under low-to-moderate wind conditions and for intermediate angles of
incidence. In detail, sea surface scattering is well described by the Bragg or tilted-Bragg model
while a strong departure from Bragg scattering is in place when dealing with oil-covered sea
surface. Hence, the polarimetric features measure such a departure from Bragg scattering that
is in place over oil areas having, thus, the capability to distinguish them from weak damping
look-alikes since they call for a scattering mechanism very close to the Bragg one.

All the polarimetric features can be estimated directly from the measured scattering matrix S
or using more powerful second-order models based on the coherency or covariance matrices, T
and C respectively, or on the incoherent Kennaugh or Mueller matrices, K and M respectively
(NUNZIATA; GAMBARDELLA; MIGLIACCIO, 2012). The coherent approach allows to define,
using the Cloude-Pottier target decomposition (CLOUDE; POTTIER, 1996) some important
polarimetric features, namely the target entropy H, the anisotropy coefficient A and the mean
scattering angle & (SKRUNES; BREKKE; ELTOFT, 2014), the degree of polarization p (NUNZIATA;
GAMBARDELLA; MIGLIACCIO, 2013) and the covariance scaling factor I'c (SKRUNES; BREKKE;
ELTOFT, 2012). Following the incoherent approach, instead, the normalized pedestal height
N P, that represents the amount of unpolarized backscattered energy on which the Normalized
Radar Cross Section (NRCS) is set in a 3-D plot of the synthetized NRCS as a function of
ellipticity and orientation angles, namely the co-polarization signature (NUNZIATA; MIGLIACCIO;
GAMBARDELLA, 2011), can be defined. Furthermore, exploiting the symmetry properties
of the Mueller matrix applying when dealing with natural scenarios, i.e., slick-free or weak
damping slick-covered sea surface, it can be obtained an easily interpretable binary output
in which Bragg and no-Bragg regions are practically non-overlapped, avoiding any problem
regarding the selection of an external threshold (NUNZIATA; GAMBARDELLA; MIGLIACCIO,
2008). Nevertheless, in literature other polarimetric parameters, directly obtainable from S,
have been proposed and tested with respect their capability to observe oil slicks at sea: the
standard deviation of the Co-polarized Phase Difference (CPD) ¢ pp (MIGLIACCIO; NUNZIATA;
GAMBARDELLA, 2009), the co-polarized correlation coefficient py /vy, the co-polarization
power ratio Ygm vy (SKRUNES; BREKKE; ELTOFT, 2014) and the conformity parameter p
(ZHANG et al., 2011), the latter having the same implicit thresholding benefit. It has been widely
demonstrated that this polarimetric feature set is suitable for oil pollution monitoring purposes.
In Fig. 3(a)-(d) some certified oil slicks and look-alikes are shown with the corresponding
output referred to different polarimetric approaches. In Fig. 3(e) the most commonly employed
polarimetric features are summarized, together with their expected behaviour when dealing
with a slick-free or a weak damping slick-covered sea surface and an oil slick-covered sea
one. In Fig. 4 results witnessing the capability of other polarimetric features to emphasize the
presence of oil slicks at sea and to distinguish them from look-alikes are shown. However,
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it is important to underline that although polarimetric measurements provide significantly
valuable information about the oil slicks physical properties, it is not a straightforward task
since the signatures of oil pollutants in polarimetric SAR imagery is strongly influenced by
weathering processes as spreading, drift, evaporation, emulsification, dissolution, dispersion,
sedimentation, biodegradation, etc. Hence, oil slicks polarimetric characterization in terms of
their damping properties, thickness and water mixing is very challenging (MINCHEW, 2012).

4. Conclusions

In this paper, a brief review of SAR-based techniques for oil slick at sea observation
is proposed. Traditionally, in single-polarization SAR imagery oil pollution monitoring is
performed using image processing algorithms that lie at the basis of unsupervised or partially
supervised classifiers. The latter are implemented in a 3-step procedure in which a set of
radiometric and geometric features are extracted from dark areas to assign a certain probability
to each of them to be an oil slick. However, such techniques does not allow the discrimination
between oil slicks and look-alikes, often needed external information or the expertise of trained
personnel. Since in the last decade a large fully- and partially-polarimetric dataset is available,
polarimetric approaches have been developed exploiting the unprecedented amount of physical
information about the scattering mechanisms of the observed scene it provide. Hence, a set of
polarimetric features accounting for oil-covered and oil-free sea surface, have been successfully
tested to be able to measure the departure from sea Bragg scattering that is in place when dealing
with oil slicks. Furthermore, on this basis, their capability to distinguish oil slicks from look-
alikes, calling for a scattering very close to the Bragg mechanism, has been demonstrated.
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Figura 1: Oil slicks and lookalikes in single-polarization SAR imagery. VV power image relevant to the C-band
MLC SIR-C/X-SAR data acquired in April 15, 1994, p.n. 11 588, in which an Oleyl alcohol LookALike (OLA)
is present (a). ERS-1 SLC SAR quick-look image relevant to the acquisition of October 4, 1994 at 11:20:00Z, in
which a mineral oil slick is present, together with a rain cell (RC) in the bottom left corner of the image (b). ERS-1
SLC SAR quick-look image relevant to the acquisition of July 16, 1992 at 9:52:00Z, in which is highlighted the
presence, in the SAR image, of a low-wind area (LW) on the top, a ship (S) with its wake (SW) on the right side,
and a low-backscetter region ruled by oceanic currents (C) in the center (c). VV-polarized squared modulus (in dB)
Radarsat-2 SAR data related to the acquisition of 14 December, 2009 at 14:09:15 UTC (ID:PDS_00886040), in
which can be identified a large oil seep (OS) on the left side of the image, and regions likely affected by stormwater
and wastewater (WW) (d).
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Figura 2: (a) Automatic oil spill detection in single-polarization SAR imagery. Sketch of a conventional partially
supervised integrated system to support oil spill monitoring. (b), (c) ERS-1 SAR images in which several correctly
classified slicks as oil connected to point sources. (d) A complex marine scenario relevant to an ERS-1 SAR
acquisition in which the classifier provides no alarms. Pictures (b), (c) and (d) are from (SOLBERG et al., 1999).
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Figura 3: (a) On the left, an excerpt of the VV channel intensity image related to a dual-pol L-band ALOS-
PalSAR acquisition (product id: ALPSRP031440190), where an oil slick is visible; on the right, the co-polarization
signature for the slick-free and the slick-covered sea surface, respectively. (b) The same of (a), for the dual-pol
L-band ALOS-PalSAR measure (product id: ALPSRP059890330) in which a look-alike is present. (c) On the
left, an excerpt of the VV power image related to a fully-polarimetric C-band SIR-C/X acquisition (processing
number 41370), where a look-alike is visible; on the right, the binary output provided by the direct comparison
of two elements of the Mueller matrix. (d) The same of (c), for the fully-polarimetric C-band SIR-C/X measure
(processing number 49939) in which an oil slick is present. (e) Summary table of the most commonly used set
of polarimetric features for oil pollution monitoring, together with their expected behaviour over oil and sea/look-
alike regions. Pictures (a) and (b) are from (NUNZIATA; MIGLIACCIO; GAMBARDELLA, 2011), (¢) and (d) (NUNZIATA;
GAMBARDELLA; MIGLIACCIO, 2008).
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Figura 4: On the top, two polarimetric SAR images. Left: excerpt of the VV channel intensity image related to a
fine quad-pol mode C-band Radarsat-2 SAR acquisition (product id: PDS01141690), where an oil slick is present;
right: excerpt of the VV channel intensity image related to a dual-pol L-band ALOS-PalSAR acquisition (product
id: ALPSRP095800900), where a look-alike is visible. On the bottom, polarimetric features with the corresponding
empirical distributions. Top-down: grey-scaled 1-ccpp, 1-NP, 1-p and H images and their empirical pdfs.
Pictures are from (NUNZIATA; GAMBARDELLA; MIGLIACCIO, 2012).
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