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ABSTRACT 

 
Multisource remote sensing data provide information of 
high relevance for classification and climate studies in urban 
areas and are of particular interest for regional and global 
climate science. To classify the urban environment using 
predefined Local Climate Zones we show a methodology 
that uses feature extraction from the multisource data and 
image segmentation as input data to an ensemble of 
classifiers and verify which algorithm has the best accuracy. 
The algorithms used were AdaBoost, Random Forest, Multi-
layer Perceptron and an ensemble of those classification 
methods. The multispectral images were from Landsat 8 and 
Sentinel 2 resampled to 100m. LCZs were generated for 
Paris and Sao Paulo and the visual analysis and quantitative 
testing of results show the ensemble of classifiers had the 
best result for both cities with OA of 87.7% and 83%, 
Kappa of 0.81 and 0.80, for Paris and Sao Paulo, 
respectively. 

Key words — Ensemble of Classifiers, Feature 
Extraction, Data Fusion. 
 

1. INTRODUCTION 
 
The number of people living on cities is growing year by 
year and perspectives show a substantial growth in near 
future. This change is not only about movement of people to 
urban centers but also about the transformation of natural 
land cover into artificial and impermeable materials [1] 
altering the climate of cities. 

To understand the urban climate characteristics of each 
city, it is necessary to know the urban landscape. Fusion of 
multisource information is today considered to be a typical 
scenario in the exploitation of remote sensing data [2], 
allowing a detailed and precise characterization of cities, by 
improving classification performance, providing additional 
information and solving situations where conflicts might 
occur. However, the extreme heterogeneity of urban areas 
has been shown one of the main causes of confusion in the 
classification of land cover and land use [3].  

For this reason, it is necessary to use classifiers that 
incorporate knowledge of urban structures by means of 

previously collected training data, e.g. random forest (RF) 
classifier proposed by [4]. 

The World Urban Database and Portal Tool (WUDAPT) 
was conceived as an international collaborative project for 
the acquisition, storage and dissemination of climate 
relevant data on the physical geographies of cities 
worldwide [5]. The fundamental data that are acquired 
represent information on the form and functions of cities.  

The form of cities can be described based on the Local 
Climate Zone (LCZ) scheme [6], which represent a generic 
description of natural and urban landscapes into categories 
based on climate-relevant surface properties. In this paper, 
we tested an ensemble of three algorithms and their 
individual performance for LCZ classification of the cities 
of Paris and Sao Paulo using Landsat 8 (L8) and Sentinel 2 
(S2) data resampled to 100m of spatial resolution. 
 

2. MATERIAL AND METHODS 
 

To improve the LCZ classification made with the Random 
Forest algorithm [7], we extend the methodology to test the 
use of an ensemble of classifiers.  
 

 
Figure 1. Overview of the workflow. 

 
In this work, we used the images of Sao Paulo and Paris 

that were made available on the first stage of Data Fusion 
Contest (DFC) part of IGARSS 2017, together with their 
LCZs. In the new methodology, shown in figure 1, the 
previously consolidated procedures were adopted [7], plus 
the atmospheric correction and, after these steps, the images 
were classified with three different algorithms. The final 
result was obtained through majority voting. 
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 2.1 Atmospheric Correction  
 
Atmospheric correction of L8 and S2 images was done 
using an in-scene method called Quick Atmospheric 
Correction (QUAC) [8]. This is important considering the 
dataset contains different locations on different times. Even 
though it is an approximate method of atmosphere 
correction, research comparing QUAC and Fast Line-Of-
Sight Atmospheric Analysis of Spectral Hypercubes 
(FLAASH) [9], based on a model of radiance transfer, show 
similarities between resulting spectra of different materials 
of a scene using both atmospheric corrections [10] and also 
an absolute precision of ±15% on reflectance values 
obtained by FLAASH [11]. 
 
2.2 Feature Extraction, Image Segmentation, Local 
Climate Zones and Samples Selection 
 
The first step of this methodology consists of the feature 
extraction that will be used as source data for the classifiers, 
i.e. the multispectral images go through transformations and 
arithmetical operations to generate new attributes that can 
effectively distinguish the classes of interest. Our attributes 
include the transformations Principal Component Analysis 
(PCA) and Minimum Noise Fraction (MNF) and also band 
math attributes [7]. 

For the classification of Sao Paulo and Paris we used 
three scenes, being two scenes of Landsat 8 with 9 spectral 
bands (Coastal, Blue, Green, Red, NIR, SWIR1, SWIR2, 
TIR1 and TIR2) and one scene of Sentinel 2 with 10 
spectral bands (Blue, Green, Red, RedEdge1, RedEdge2, 
RedEdge3, RedEdge4, NIR, SWIR1 and SWIR2), all 
resampled to 100m spatial resolution. In this case, there are 
28 attributes from the spectral bands, 28 PCAs, 28 MNFs 
and 17 by band math generation, totalizing 101 attributes for 
each city. Those are the source data used for data mining by 
the all classification algorithms. 

Image segmentation allows detection and separation of a 
set of pixels as objects of interest [12]. Thus an object is a 
region geographically defined by a segment and containing 
all layers, i.e. the spectral bands and the generated attributes. 
In this methodology, only the spectral bands were used to 
generate segments, were the parameters used were 
scale = 20, shape = 0.8 and compactness = 0.9. 

Local climate zones are climate-based classifications of 
urban and rural sites that apply universally and relatively 
easily to local temperature studies using screen-level 
observations [6]. The 17 LCZ classes used are shown on 
Fig. 2. An available ground truth set was transformed into 
segments that resulted in 536 objects for Paris and 527 
objects for Sao Paulo. Those selected samples represent less 
than 1% of the total area of the scenes. Average and 
standard deviation values of these sampled objects were 
split into two parts, 90% reserved for training the classifiers 
and 10% for classification validation [13]. There were no 
occurrences of class 7 Lightweight low-rise and class 13 

Bush and Scrub on any of the two cities. On Paris there 
were not samples for class 3 Compact low-rise, class 10 
Heavy industry and class 16 Bare soil or sand. 

 

 
Figure 2. Local climate zone scheme [5] and legends. 

 
2.3 Classification Methods  

 
In this work we investigated the use de two classifiers other 
than the RF, separately, and to further improve our results 
we combined the results through voting. The RF is a 
classification method introduced by [4] that uses a large 
collection of de-correlated decision trees.  

Different random sets of samples are created from the 
original sampled objects. It uses fewer resources than 
conventional classification by decision trees because each 
tree uses only a fraction of the source input [14]. The results 
of classification from each tree for each object are called a 
class vote and the resulting classification is decided by 
majority of class votes [15]. The RF has three useful 
characteristics: internal error estimates, the ability to 
estimate variable importance, and the capacity to handle 
weak explanatory variables [16].  

Were exported from eCognition all objects, including 
previously used sampled objects, this time with no 
associated class information. All 62988 objects for Paris and 
38364 for Sao Paulo, were classified by the open source 
software WEKA 3.7 (Waikato Environment for Knowledge 
Analysis) with 100 trees and the resulting classification 
visualized on QGIS Desktop 2.12.3.  

Another classifier chosen for this work is the Adaptive 
Boost ou AdaBoost [17], which is used together with a base 
algorithm, in our case the Random Forest. The training 
sample set was used for training. Later the RF is repeatedly 
invoked and for each call the AdaBoost gives the RF a 
different distribution of weights for each of the samples. The 
classification begins with associated weights evenly 
distributed. For each cycle of learning, the RF generates a 
hypothesis based on the current weights prioritizing the 
correct classification of data that has the largest associated 
weights. Iteratively those weights are reexamed so as to 
change the ones that are related to incorrectly classifications 
and a new round begins. After all rounds previously set, the 
AdaBoost combines the entire intermediate hypothesis to 
generate a final hypothesis with the least classification 
errors.  

Multi-layer Perceptron (MLP) [18] is a neural network 
with multiple intermediate layers between input and output. 
The input layer is responsible for reception and propagation 
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of the input information to the following layer, while the 
output layer receives information from the middle layers 
delivering the resulting classification. In this neural network 
architecture, the intermediate layers are composed of 
neurons bounded by weighted synapses. The learning is 
done by error backpropagation, when errors from the exit 
values are calculated and are propagated back until the 
beginning while adjusting the weights and the output values 
are again calculated. Lastly we did an ensemble of 
classifiers using Majority Voting [19], which consists of 
classifying an object as the class chosen by the majority of 
the individual classifiers. 
 

 3. RESULTS AND DISCUSSION 
  

Source data for our method were multi temporal and 
multisource remote sensing images. The resulting four 
classifications of Paris and of Sao Paulo were quantitatively 
evaluated. For Paris, RF had the worst result compared to 
the other classifiers with an OA of 84.2%, while the MLP 
was the best classifier with OA of 85.9%. For Sao Paulo, the 
RF was also the worst performing algorithm with OA of 
75%, while MLP again achieved the best results with OA of 
77.4%. For both cities the Majority Voting achieved a better 
overall result, as can be seen on Table 2. 
 

 
Table 2. Classifiers Results. 

 
It can be seen that, although AdaBoost was better than 

RF for Paris, the same didn't happen with Sao Paulo, where 
the results were similar. The reason might be the reduced set 
of training samples.  

For a better evaluation of the results we made an 
analysis using the confusion matrix where the size of circles 
is proportional to correctness, if they are on the main 
diagonal, or confusions, if they are elsewhere (Figure 3). 
The colors used are similar to those of the LCZs. Analysis 
of the ensemble confusion matrices show that Paris had C2 
(compact midrise) correctly classified while C5 (open 
midrise) was the most misclassified class, and the Rural 
Climate Zones had a very good classification. The 
remaining difficulties were in separating urban classes 
because different LCZs have the same materials on urban 
environments but not the same height, having similar 
interclass spectral signatures. The class C8 (large low-rise) 
was also correctly classified and this is probably because it 
is a well-defined class in terms of composition of materials. 

For Sao Paulo we can see that C1 (compact high-rise) 
and C4 (open high-rise) were correctly classified while C3 
(compact low-rise), C6 (open lowrise) and C8 (large low-

rise) being slightly misclassified. The class C5 (open 
midrise) was also the most misclassified with only 33.3% 
accuracy, but in Sao Paulo it was misclassified as an 
industrial class (C10 – heavy industry) and also as C3 
(compact low-rise). Finally, C9 (sparsely built) was 
completely misclassified as C6 (open low-rise) probably due 
to the similar materials present on those classes. Rural 
Climate Zone classes were all well classified except C16F 
that was half misclassified as C5 (open midrise). Vegetation 
classes also had confusion between themselves (C11A and 
C12B). 

 

 
 

 
Figure 3. Percentage analysis of the confusion matrix of 

the classification resulting from the ensemble of 
classifiers. 
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4. CONCLUSIONS 
 
This work presented a method to classify urban 
environments with low spatial resolution, more specifically, 
LCZ mapping with data from L8 and S2 resampled to 100m. 
The established workflow based on attribute generation 
from source images and use of three classifiers and their 
ensemble produce reliable results. The use of the ensemble 
of classifiers brings a better precision than using any single 
classifier by itself. Meanwhile, due to a small set of training 
and validation samples, the AdaBoost classification could 
not significantly improve the RF results as expected. It must 
be noted that restricted spectral separability of certain 
materials imposes limitations on the method. Further works 
could use data fusion with the inclusion of normalized 
digital surface models or laser scanning to reduce 
confusions between urban classes.  
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