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ABSTRACT 

The capacity of ecological models to better capture and 

predict ecosystems variations and changes is dependent on 

the choice of its environmental inputs’ variables, being 

precipitation the mostly used hydroclimatic variable. Yet, 

water available to plants is a function of rainfall and 

atmospheric evaporative demand. We assessed which 

hydroclimatic variable better explains variations in 

vegetation productivity in a seasonally dry tropical mountain 

system. We modeled NDVI temporal responses of different 

vegetation types to Climatic Water Deficit (CWD) and 

Precipitation, answering the following questions: 1) Are the 

responses of vegetation to different hydroclimatic variables 

specific for each vegetation type? 2) If so, which 

hydroclimatic variable better explains vegetation 

productivity for each vegetation type? We found that 

seasonally dry vegetation types were more responsive to 

CWD, while moist vegetation productivity was poorly 

explained by all hydroclimatic variables. The timing of 

responses of vegetation to CWD or precipitation varied 

according to site specificity. 

Key words — Evapotranspiration, Climatic Water 

Deficit, Mountain, NDVI, Vegetation productivity. 

1. INTRODUCTION 

In ecological studies, the identification of environmental 

variables that are ecophysiologically meaningful is crucial to 

improve models and better forecast ecosystem changes [1]. 

Hydrological dynamics are a major driver of ecosystem 

function, and yet, are usually oversimplified when studying 

species distribution and vegetation dynamics [2]. Given the 

importance of water to ecological processes, the choice of 

predictive hydrological variable is directly related to the 

capacity of models to capture and predict ecosystem 

dynamics [3].   

Precipitation is frequently used as a predictor of plant 

water availability, but it is known that the water available to 

plants is a function not only of rainfall input, but of a set of 

other variables, such as atmospheric energy balance [4]. 

Stephenson (1998) advocates that many correlative studies on 

vegetation distribution and water availability do not make use 

of hydroclimatic parameters that are truly meaningful to plant 

physiology, and propose that Actual Evapotranspiration 

(AET) and Climatic Water Deficit (CWD) should be used 

instead of precipitation, since both variables provide a 

reasonable biological interpretation, and have shown good 

correlation with the distribution of different vegetation types, 

from local to continental scales [5]. Both CWD and AET 

estimate the length and magnitude of hydroclimatic 

conditions to plants; CWD is related to drought, and AET 

represents favorable conditions of availability for 

biologically usable water and energy inputs to the 

environment [4]. 

In the tropics, vast areas experience seasonally dry 

climates, which are well-defined by a wet season during 

which most of the annual precipitation occurs, followed by a 

prolonged dry season. These areas harbor a great variety of 

vegetation types, from semi-deciduous to dry forests and 

savannas [6]. Seasonally dry tropical environments are 

expected to experience future changes in periodicity due to 

climate change, with stronger impacts predicted for higher 

elevations [7]. Among other impacts, tropical montane 

ecosystems will potentially suffer an acceleration of their 

hydrological regimes, caused by an increase on the variability 

of precipitation patterns [8], leading to, among others effects, 

changes in ecosystem functioning and productivity, or 

improvement of environmental conditions to invasive 

species, increasing mortality rates and, therefore impacting 

species diversity and distribution. For this reason, 

understanding and quantifying the spatial and temporal 

patterns of seasonal plant water use can provide important 

insights on how tropical mountainous ecosystems will 

respond to climate change. 

The Espinhaço Range is a seasonally dry mountainous 

region feeding the watersheds of three large river basins in 

Brazil (São Francisco, Atlântico Leste and Atlântico Sul), 

with a primary S-N direction. This region is an ecotone of 

semi-deciduous moist forests, savannas, dry forests and 

mountain vegetation (Figure 1). This ancient landscape, 

dating back to 640 Mya, has ample topographic and 

altitudinal variation, with mountain peaks reaching over 2000 

meters a.s.l [9]. A recent analysis of spatial precipitation 

patterns in the Espinhaço Range showed that there is no 

significant difference in total annual rainfall between eastern 

and western sides, which are occupied by semi-deciduous 

forest and savanna vegetation, respectively [10]. For this 

reason, here we propose an analysis to assess which 

hydroclimatic variables better explain vegetation dynamics in 

the Espinhaço Range.  
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To understand the relations between vegetation 

productivity and hydroclimatic variables in this tropical 

mountainous system, and improve variables choice for 

bioclimatic studies, we addressed the following questions: 1) 

Are the responses of vegetation to different hydroclimatic 

variables specific for each vegetation type? 2) If so, which 

hydroclimatic variable better explains vegetation 

productivity for each vegetation type? 

2. MATERIAL AND METHODS 

We adjusted pixel-wise linear regression models between an 

NDVI dataset, a proxy of vegetation productivity, and two 

layers of hydroclimatic variables (precipitation and CWD) to 

assess the temporal vegetation responses to water availability. 

The linear regression models were fitted using monthly 

pairwise observations, with 0, 1 and 2-month lags for 

precipitation and CWD, to capture possible lagged vegetation 

responses to climate. All datasets covered the period between 

January/2001 and December/2017, at monthly intervals, with 

a 1 x 1 km spatial resolution. To ensure we were sampling 

natural vegetation, we fitted the models to all pixels within 

the studied region to reveal broad spatial patterns, but then 

evaluated model fit only for regions corresponding to known 

protected areas within the Espinhaço Range.   

Vegetation types at each protected area were classified 

following the Brazilian official biome classification, and then 

attributed to the protected areas. To delineate the “Campos 

Rupestres” classification, which is not an official biome, we 

identified all protected areas that overlaid the Silveira et. al 

(2016) “Campos Rupestres” delineation, and reclassified it as 

“Campos Rupestres” protected areas. The vegetation types 

found on the study area are, hereafter, classified as 

“Caatinga” (5014 pixels), “Campos Rupestres” (8041 pixels), 

“Cerrado” (7900 pixels) and “Mata Atlântica” (11572 pixels). 

We used a time-series of NDVI images generated from 

Moderate Resolution Imaging Spectroradiometer (MODIS) 

images. Data was obtained from the Land Process Distributed 

Active Archive Center (LP-DAAC – USGS/NASA). 

Monthly NDVI pixels values result from the best pixel 

composite of two 16-day composite periods. To improve the 

quality of pixels, and minimize atmospheric and cloud 

effects, the 16-day period algorithm chooses the best 

available pixel within all the acquisition dates. All monthly 

images were downloaded, mosaiced and transformed to 

GeoTIFF format using the “MODIStsp” package of the R 

programming language [11]. 

Precipitation was obtained from the Climate Hazards 

Infrared Precipitation with Stations (CHIRPS) dataset [12]. 

CHIRPS is a quasi-global precipitation dataset which 

incorporates satellite data of cold cloud duration and gauge 

stations. Using an interpolation approach between cold cloud 

duration rainfall estimates and gauge station data, CHIRPS 

provides daily, pentadal, monthly, 2 and 3 months aggregated 

and annual precipitation gridded datasets at a 5 x 5 km spatial 

resolution. We disaggregated the data to 1 x 1 km spatial 

resolution to match the NDVI dataset. CHIRPS is freely 

available at http://chg.geog.ucsb.edu/data/chirps/.  

We used the TerraClimate dataset [13] to obtain CWD 

values, which are gridded (~ 4km) monthly data products. 

TerraClimate products are generated from the interpolation 

of different global weather station databases from WorldClim 

(version 1.4 and version 2.0), CRU Ts4.0 and JRA-55. To 

calculate AET and CWD, TerraClimate uses a one-

dimensional modified Thornthwaite-Mather climatic water-

balance model, with CWD given as the difference between 

Potential Evapotranspiration (PET) and Actual 

Evapotranspiration (AET). We also disaggregated the data to 

1 x 1 km spatial resolution to match thr NDVI dataset. 

TerraClimate is freely available at 

http://climatologylab.org/terraclimate.html. 

 

 

Figure 1. Overview of the Espinhaço mountain range in Brazil. 

On the left panel, the topography and extent of the Espinhaço 

Mountain Range and the protected areas classified by 

vegetation types, in Brazil. On the right, the Espinhaço Range 

as an ecotone of vegetation types, and as the watershed of São 

Francisco (SF), Atlântico Leste (AL) and Atlântico Sudeste (AS) 

basins. 

3. RESULTS 

The pixel-wise linear regression between NDVI and either 

precipitation or CWD showed an inverse vegetation response 

to hydroclimatic variables (Figure 2). We found a general 

spatial pattern of higher responses of NDVI to CWD for 

monthly pairwise linear regressions, while the highest 

explained variance for precipitation was found using a 2-

month lagged regression (Figure 2 A and 2 C).  

“Caatinga” vegetation productivity better responded to 

pairwise CWD (median r² = 0.87) and had the worst results 

when using 2-month lag CWD (median r² = 0.14). “Campos 

Rupestres” was most responsive to 1-month lag CWD 

(median r² = 0.80) and least to 0-lag pairwise precipitation 

(median r² = 0.12). “Cerrado” productivity was better 

explained by 1-month lag CWD (median r² = 0.92) and had 

the lowest responses to pairwise precipitation (median r² = 

0.18). “Mata Atlântica” productivity was the least responsive 
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to hydroclimatic variables among all vegetation types, with 

its largest amount of variance explained by 2-month lag 

CWD (median r² = 0.40) and the smallest by the pairwise 

precipitation regression (median r² = 0.05).

 

Figure 2. A) Pairwise linear regression; B) 1-month lag linear regression; C) 2-month lag linear regression. Maps resulted from the 

linear regression between NDVI (Jan/2001 to Dec/2017) and CHIRPS precipitation dataset (Jan/2001 to Dec/2017) (A; B and C left 

panels) and Climatic Water Deficit (Jan/2001 to Dec/2017) (A; B and C right panels), and boxplots of the r² resulted from the linear 

regressions (A; B and C middle panels) for each vegetation type sampled at known protected areas (CA = Caatinga; CP = Campos 

Rupestres; CE = Cerrado; MA = Mata Atlântica). 

4. DISCUSSION 

The amount of water available to plants is a result of the 

balance between hydrological inputs and outputs controlled 

by the amount of energy held in a system. Our results show 

that the most commonly used variable in ecological 

predictive models, precipitation, oversimplifies this 

hydroclimatic aspect, since vegetation productivity responses 

were poorly correlated to pairwise rainfall. Vegetation 

responses to CWD, a variable that accounts for the 

simultaneous availability of water and energy usable by 

plants, better explained NDVI variation in almost all cases. 

 “Caatinga” vegetation, which experiences seasonally dry 

to dry environments, was highly correlated with almost every 

hydroclimatic variable, with the exception of pairwise 

precipitation and 2-month lag CWD. Caatinga vegetation 

productivity is highly dependent on water, shedding their 

leaves to escape from drought, with the majority of plants 

presenting this drought avoidance strategy to periods of low 

water availability [10, 14]. The dry season experienced by 

caatinga is characterized by a long period of low to the 

absence of rainfall together with extremely high 

temperatures, that is, an excess of energy availability. Thus, 

the 1-month lag of precipitation explaining a greater variance 

on NDVI for this vegetation type, indicates that water takes 

around 1-month after the rainfall event to be available to plant 

use. This is a result of the first rainfall events in the beginning 

of the rainy season being rapidly evaporated to attend the high 

atmospheric evaporative demand from the dry season. 

However, caatinga vegetation is highly tuned to CWD, given 

2352



the capacity of this variable to capture the coupling between 

small variations on water inputs and vegetation productivity, 

expressed by this balance between water inputs and 

atmospheric evaporative demand.      

 “Campos Rupestres” are found on mountaintops, 

associated with high topographic variation and rugged relief 

[15]. Runoff accounts for a major portion of the water balance 

in these environmental conditions, justifying the higher 

explained variance between vegetation productivity and the 

timing of precipitation. In addition, campos rupestres in high 

altitudes experience a near-constant presence of cloud cover, 

and consequently a lower amount of energy coming from 

solar radiation [10]. This way, “Campos Rupestres” 

productivity is better correlated to a 1-month lag CWD, 

demonstrating that this vegetation demands a certain 

accumulation of water and energy to be responsive.  

The higher r² found for “Cerrado” productivity between 

1-month lag CWD and 2-month lag precipitation is a function 

of the relations between topoedaphic conditions and energy 

availability. The “Cerrado” distribution is related to a region 

with high water retaining capacity, but the high irradiance and 

elevated temperatures during the dry season deplete the upper 

soil layers of water in this period [16]. Given the smooth 

topography and well-drained soils, deep-rooted plants can 

access water from the deeper soil layers even during the dry 

season, explaining the largest portion of productivity variance 

explained by the 2-month lag precipitation response. 

However, the best response was still found for the 1-month 

lag CWD, when there is a better balance between rainfall 

inputs and energy availability, especially during the rainy 

season.  

The moist vegetation typical of the “Mata Atlântica” 

biome showed the lowest response between plant 

productivity and hydroclimatic variables, as a result of high-

water availability throughout the year. This suggests that 

water availability may not be the main driver of vegetation 

productivity, in relation to other environmental conditions. 

Tropical moist forest phenology is usually characterized by 

continuous leaf flushing, as shown for Mata Atlântica [17] 

and Amazonia [18], with high influence of irradiance and 

cloud cover [10, 17]. 

5. CONCLUSIONS 

The vegetation types analyzed across the study area, with 

exception of “Mata Atlântica”, were highly correlated with 

hydroclimatic variables, especially with CWD, with 

variations in the timing of response regarding its experienced 

environmental conditions. We conclude that CWD is a better 

hydroclimatic predictive variable when analyzing vegetation 

dynamics in dry to seasonally dry regions, since it has the 

ability to capture plant response patterns to the amount of 

energy and water, in the spatial and temporal dimensions.  
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