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ABSTRACT 

 

The spectrally active components of the soil allow the 

realization of integrative analyzes of soil aspects such as their 

classification. The objective of this study was to evaluate the 

separation of soil classes from spectral reflectance data using 

main components analysis (PCA). The study was carried out 

in the Aiuaba Experimental Basin located in the municipality 

of Aiuaba-CE. Soil samples were collected in Ustalfs, Ustults 

and Ustorthents profiles. The samples were submitted to 

spectral analysis and subsequent PCA analysis, CPs were 

used to separate the soil classes using the two-dimensional 

graphical analysis. From the analysis of spectral behavior 

data from the different soil classes, it was possible to separate 

the class of Ustorthents from the Ustalfs and Ustults. 
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1. INTRODUCTION 

 

Due to the exponential growth in data availability in 

several areas, a new era of information processing, the big 

data, has started, with which new needs raised, such as the 

processing capacity of these data. Facing this, there were 

proposed techniques and algorithms of processing that aim to 

meet this need, and that can return information from this data 

density. [1], [2]. 

In the field of soil science, the great variability of soils 

and its attributes have always involved large databases and, 

with the advent of new technologies that make it easier to 

acquire, this characteristic is more and more prominent. 

Studies that depart from surveys using orbital [3] - [6] or 

proximal sensors, such as those of [7] that estimated the 

concentration of heavy metals in the soil correlating the 

spectra of these elements with their reflectance, or [8] that 

predicted textural classes from soil reflectance data, both 

produce dense databases that require large processing 

capacities. 

Another soil aspect dependent on numerous variables is 

its classification from a pedogenic point of view. This has 

been the subject of several studies using proximal sensors, as 

done by [9] that aimed to predict soil classes through their 

spectral characteristics. The fact of the spectrally active 

components of the soil in the visible and near infrared (Vis-

NIR) regions are mainly iron oxides, organic matter, clay 

minerals, carbonates and water [10], [11] integrative analyzes 

of soil aspects such as degradation [12], soil quality [13] and 

their classification [14], [15] are possible. 

However, the problem with the high density of the 

databases generated by analyzes performed with proximal 

sensors still persists. As one of the alternatives, we have the 

main components analysis (PCA), which transforms high 

density datasets into components representing the initial data, 

having a smaller size and preserving the data variability as 

much as possible [1], [ 2]. 

In this way, the objective of this study was to evaluate 

the separation of soil classes from spectral reflectance data 

using main components analysis. 

 

2. MATERIAL AND METHODS 

 

The study was conducted in the Aiuaba Experimental 

Basin (BEA), located in the municipality of Aiuaba-CE in the 

Inhamuns microregion, currently considered the largest 

Federal reserve of the Caatinga biome. The current area of the 

basin is 12 km² (Figure 1) and it is fully inserted in the 

ecological station (ESEC), which means that it is a preserved 

area. 

 
Figure 1. Aiuaba Experimental Basin (BEA), its location in the 

State of Ceará, in the Upper Jaguaribe Basin, and in the Bengué 

Representative Basin, with the distribution of soil classes and 

basin hydrography. 
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The climate of the region is defined as 'Bs' according to 

the Köppen’s classification, presenting average precipitation 

of 560 mm year-1; evaporation of the 2500 mm year-1 by class 

A tank [16]. 

Based on the assessment of the environmental dynamics 

in the basin, the area was divided into three associations 

between soil and vegetation (ASV's) that were defined as 

homogeneous units for studies of environmental variables. 

[17], [18] classified the ASVs based on their predominance 

of soil and vegetation, which can be observed in Table 1. 

 

Table 1:  Characterization of the components of the Soil 

Vegetation Associations (ASV’s) in the Aiuaba 

Experimental Basin (BEA). 

ASV 
Predominant 

vegetation 
Soil group 

Area in 

BEA (%) 

ASV 1 

Catingueira 

(Caesalpinia 

pyramidalis Tul) 

Ustalfs 

(TCo) 
20 

ASV 2 

Angelim 

(Piptadenia 

obliqua) 

Ustults 

(PVA) 
34 

ASV 3 

Jurema-preta 

(Mimosa tenuiflora 

(Willd.) Poir) 

Ustorthents 

(RL) 
46 

Source: [18]. 

 

Four soil samples were collected in characteristic 

profiles at each ASV. The samples were collected at a soil 

depth of 0-0.2 m. Subsequently, they were stored and 

identified for further analysis. 

Analyzes were carried out to determine the texture and 

organic matter (OM) content according to the methodology 

[19]. 

In order to obtain the soil reflectance data using a 

proximal sensor, the FielSpec 3 sensor was used according to 

the methodology of [20]. This sensor has resolution of 1 nm 

(350-1100 nm) and 2 nm (1000-2200 nm). The system 

geometry was based on the perpendicular positioning of the 

sensor in relation to the sample, maintaining the distance of 6 

cm. The light source was positioned at 50 cm from the 

sample, forming a 45° angle with the zenith. The spectral 

reference standard used was a white spectral plate. The 

reflectances were obtained from the average of three readings 

for each sample. 

After obtaining the data, they were submitted to main 

component analysis (PCA), using the software R and the 

FactorMaineR package scripts provided by [21], in order to 

identify the most important components and the separation of 

the soil classes. 

 

3. RESULTS 

 

The results of the textural class and OM can be observed 

in Table 2. 

 

Table 2: Texture and organic matter, and their 

deviations, for the three soil classes analyzed.  

Soil 

Group 

Organic 

matter 

Texture 

Sand Silt Clay 
Coarse 

sand 

 (g.kg-1)  (g.kg-1)  

Ustalfs 

(TCo) 

15,1 

(13,5) 

0,36 

(±2,2) 

0,45 

(±4,2) 

0,18 

(±3,0) 

0,18 

(±1,5) 

Ustults 

(PVA) 

31,7 

(4,5) 

0,35 

(±5,5) 

0,25 

(±1,7) 

0,32 

(±12,9) 

0,14 

(±4,0) 

Ustorth

ents 

(RL) 

12,8 

(3,0) 

0,68 

(±15,8) 

0,22 

(±5,7) 

0,09 

(±7,6) 

0,35 

(±7,9) 

 

The highest OM contents were observed in the Ustults, 

while the lowest in the Ustorthents. A highlight is given to 

the silt content of Ustalfs, which may be associated with its 

poor pedogenetic development. The highest sand contents, as 

expected, were observed in the Ustorthents. 

In relation to the spectral response curves of the soils 

obtained with the proximal sensor, the soil classes of the three 

ASVs presented a quite different behavior as can be observed 

in Figure 2. 

 

 
Figure 2. Spectral curve of the soil classes obtained with 

proximal sensor. 

 

It was observed a greater homogeneity of spectral 

response for the samples belonging to the Ustalfs, a greater 

differentiation was observed only after the wavelength of 

1350 nm. While in the other two classes, greater 

heterogeneity of responses was observed at most 

wavelengths. 

Regarding the separation of the wavelengths that 

compose the soil reflectance, the following data separation in 

main components (CP) was observed in the PCA analysis 

(Figure 3). 
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Figure 3. Variation of the first seven major components of the 

reflectance spectrum of the soils and the contribution of the 

spectral data in the construction of these. 

 

It was observed that the greatest variability of the data 

is in the first main component, and significant variability is 

observed until the third CP, which explains 99.4% of the 

variation of the spectral data. The contribution of the number 

of reflectance bands in the construction of the CPs is strongly 

concentrated in the first two components, which indicates a 

low contribution in the variability when considering the 

spectral data that constitute the other main components. 

After the treatment of the spectral data through the 

PCA, the first three CPs were used to separate the soil classes 

using the two-dimensional graphical analysis (Figure 4). 

 

 
Figure 4. Two-dimensional analysis of the spectral data of 

Ustalfs, Ustults and Ustorthents. 

 

 It can be observed in the comparison between the first 

two CPs that the spectral data are sufficiently discriminatory 

to perform the separation between the Ustalfs, Ustults and 

Ustorthents. The distinction between Ustorthents and Ustalfs 

was not well performed in the other two-dimensional 

analyzes. It was observed that, in the analyzes between CPs 

with lower variability, the separation between soil classes 

could not be performed. 

 

4. DISCUSSION 

 

The selective absorption by the soil components, mainly 

iron oxides, OM and the constituents of the clay fraction, 

make possible the use of Vis-NIR in the evaluation of soil 

properties [9], [10]. The wavelengths that presented the 

greatest contribution in the formation of the three main 

components (PCs) were the intervals of 1412-1420; 750-760 

and 350-380 nm, respectively. These wavelengths are mainly 

associated with the reflectance of clay minerals, 1:1 

(kaolinite), and 2:1 (smectite, mica and illite) which have a 

strong signal between 1400-2200 nm. However, organic 

matter is characterized in the range of 750-870 nm, its 

chromophore characteristic is mainly given by the 

combination C-H, N-H and by the vibration of these elements 

[9]. The range of 380-430 nm and 480-550 nm are absorption 

ranges characteristic of iron oxides such as hematite and 

goethite [22], [23]. 

When the greatest variability in the first CP is observed, 

this variation should be associated with greater heterogeneity 

of the reflectances in all soils evaluated in the range of 1350-

1450 nm (Figure 2), which corroborates with the bands that 

contributed the most in the construction of the first 

component, which certainly cooperated for the distinction of 

soil classes in the two-dimensional analysis.  

The Ustorthents class, which presented the greatest 

differentiation both in the reflectance curve and in the two-

dimensional analysis, is characterized by a higher albedo 

response and thus an upward growth of its curve (Figure 2) 

as well as an increased reflectance near the infrared (SWIR, 

1200-2500 nm), which could explain the lower amount of 

iron oxides, and the higher amounts of quartz present in the 

soil [20].  

The separation of the classes using PC2 and PC3 were 

not possible due to the low accumulated variability of their 

constituents, whereas the non-separation of Ustrorthents and 

Ustalfs in the third moment may be associated to the spectral 

behavior of the soils in the range 350-450 nm that contributed 

more strongly to the construction of CP3. This range makes 

the characterization of iron oxides, and due to the incipient 

degree of pedogenetic development of the classes [24], [25] 

the reflectance variation may not have been representative 

enough for the separation. 

 

5. CONCLUSIONS 

 

From the use of spectral behavior data from different 

soil classes, submitted to main components analysis, it was 
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possible to separate the class of Ustorthents from the Ustalfs 

and Ustults soil classes. 
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