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ABSTRACT

An ensured supply of drinking water is a major purpose of
water reservoirs. The input and accumulation of sediments
and nutrients in the reservoir body can cause strong growth
of algae and cyanobacteria which leads to significant quality-
related use restrictions. Continuous monitoring of the reser-
voir water quality can help to indicate such trends at an
early stage. Small and lightweight cameras are promising
to be used on UAV platforms as close range remote sensing
system. We present the set up of such a UAV monitoring
system which main elements are a hyperspectral camera and
a thermal infrared imaging sensor and show first results
from two field campaigns at the Passaúna reservoir close to
Curitiba, Brazil.
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1. INTRODUCTION

In many parts of the world, reservoirs are indispensable for
the production of drinking water and electricity. More than
59 000 reservoirs produce 20% of the global electricity and
supply up to 40% of the irrigation area. Around 12% of the
reservoirs with large scale dams are used for water supply
including drinking water [1–3]. Their operation, however, is
associated with a far-reaching encroachment in the continuum
of river courses and they form a sink, especially for particulate
material and substances bound to it. One immediately
noticeable consequence of this is the eutrophication of the
reservoirs. The strong growth of algae and cyanobacteria then
leads to significant quality-related use restrictions, especially
in the production of drinking water.

Such conditions require long-term, integrated management
strategies that adequately take into account the water and
material flows in catchment areas as well as the essential
reactions in water reservoirs. A minimum monitoring
concept which consists of pointwise and continuous in-situ
measurements as well as spatially extended and recurrent
remote sensing observations is one of the aims of the
German-Brazilian research project "Multidisciplinary data
acquisition as the key for a globally applicable water resource
management (MuDak-WRM)" to provide an adequate
monitoring of the water quality in the Passaúna reservoir in
the federal state Paraná, Brazil.

In the MuDak-WRM project a close range remote sensing
system is developed to support the qualitative and quantitative
measurement of material input to water supply reservoirs.
It is envisaged to address the scale leaps between satellite
remote sensing with reservoir wide coverage on the one

hand and localized, distributed in-situ measurements on the
other hand. The latter enables the exact determination of all
relevant parameters, but only at single observation points and
in a time-consuming and cost-intensive manner. Multi- and
hyperspectral remote sensing in contrast enable an automatic
and spatially extensive analysis of water quality parameters,
but limited to optically active parameters in the near surface
water column, prone to gaps in data provision as consequence
of cloud coverage and usually with less accurate parameter
estimates. In comparison to other methods, satellite images
suffer from low spectral resolution and the atmospheric
correction is inevitable [4].

In this project we employ a close range remote sensing
system, which is composed of a hyperspectral camera and
a thermal infrared imaging sensor on a UAV to observe the
material input at the inflow of the reservoir and dissemination
in the reservoir. The close range remote sensing approach
is chosen as it bridges the inherent scale jump between
ground-based in-situ measurements and well established
and sufficiently tested satellite-borne multispectral remote
sensing approaches for water quality observation on the data
as well as on the model side. By means of hyperspectral
imaging sensors which are installed on a UAV platform, the
traditional remote sensing approach is transferred to ground-
level platforms in order to develop a flexible, cost-effective
and cloud independent method of water remote sensing.
When mounted on a UAV system, the new generation
of low cost and lightweight hyperspectral sensors offer a
flexible acquisition of data with high resolution in space
and time. However, these mostly uncooled instruments have
less radiometric and geometric precision and reduced fidelity
compared to sensors that are installed on satellite platforms.
In this paper we present the system setup, calibration and data
correction concepts as well as first results from application at
the Passaúna reservoir where we focus on turbidity and the
water surface temperature.

2. MATERIAL AND METHODS

Assembling of the sensor system is presented in Section 2.1,
followed by the radiometric calibration of the sensors which
is briefly introduced in Section 2.2. The methods leading to
our first results are then presented in Section 2.3.

2.1. Sensor System

The multi sensor imaging system consists of a hyperspectral
camera, a thermal camera and a standard RGB camera
(see Table 1). To estimate the water quality parameters
like turbidity and chlorophyll-a (chl-a) we choose the S185 3157



Figure 1: The sensor system is mounted on a coaxial octocopter.
The cameras are stabilised by a two axis brushless gimbal.

Table 1: Sensor specifications as given by the manufacturers.

S185 Qmini Tau 2
Wavelength [µm] 0.450 - 0.95 0.225 - 1.0 7.5 - 18.5
Channels 125 2500 1
Resolution [nm] 8 @ 532 1.5 -
Sampling [nm] 4 0.31 -
Weight [g] 490 60 100
Sensorsize 50x50 1 640x512
PAN [Pixel] 1000x1000 - -
FOV [deg] 33x33 180* 45x37

*cosine corrector

hyperspectral camera from Cubert GmbH with 125 channels
in the wavelength range from 450 nm to 950 nm. The camera
features snapshot acquisition mode with an additional high
resolution panchromatic channel, which can be used for
glint identification. We use an upward looking spectrometer
with 2500 channels in the range from 225 nm to 1000 nm
to calculate reflectance spectra as the ratio between the
water leaving radiance, captured by the hyperspectral camera
and the downwelling irradiance at the UAV measured by
the spectrometer. We use this setup to precisely estimate
reflectance spectra, even in conditions with permanently
changing cloud cover as it occurs often in southern Brazil.
The thermal infrared camera Tau 2 from FLIR is used to
measure the temperature of the water surface. For more visual
information about the conditions during the flight and for post
processing purposes we use the high resolution Survey2 RGB
camera from MAPIR. To ensure a synchronous acquisition,
the sensors are triggered by one hardware trigger. The sensors
are mounted on a two axis gimbal on a coaxial octocopter
with 4.5 kg maximum payload (see Figure 1). For precise
navigation which is obligatory for mosaicking we use an RTK
GNSS system with a mobile base station. Using the full
sensor system and inflatable rescue devices the flight time is
around 15min including take-off and landing. This equals
a mapping area with the S185 camera of 0.1 km2 at a flight
height of 120m above ground level.

2.2. Radiometric Calibration

Calculating spectral reflectance as the ratio of radiance
measured by different sensors often leads to problems
due to unknown sensor characteristics. Without knowing
their individual system function, hardware specific bias
of radiance measurements causes erroneous parameter
estimates. Therefore a proper radiometric cross calibration of
the sensor system is essential. In case of using a hyperspectral
camera, a cross calibration between the spectrometer and
each pixel of the camera becomes necessary. The data
captured with our hyperspectral camera shows a strong light
fall off to the image margins of each channel and diagonal
and concentric circle patterns. These effects can be reduced
by first applying a wavelength calibration and second a
flatfielding calibration to every pixel of the hyperspectral
image [5, 6]. A low cost wavelength calibration can be done
by using an off-the-shelf fluorescent lamp. The absolute
calibration of the sensors must be done with professional light
sources but a low cost relative calibration is also possible
using incandescent light and a target with known reflectance
properties.

2.3. Data Processing

The estimation of water quality parameters like turbidity is
carried out by the processing of water leaving reflectance
measurements using the hyperspectral camera. The
water leaving reflectance can either be calculated using
a white reference or another spectrometer for irradiance
measurements. The water quality parameters can be
estimated using different methods like band ratios or machine
learning approaches [4,7]. The results presented in this paper
are the output of a partial least squares regression (PLS)
adapted from [8].

Total reflection of the sunlight at the water surface, also
called glint, appears as a random pattern on undulated water
surfaces, at points where the surface normal equals the
bisecting line between the sun pointing vector and the camera
line of sight. These glint biased hyperspectral pixels can be
detected by using the simultaneously acquired panchromatic
image. This is done for each image by a threshold operation
using the high-resolution image to generate a mask for the
low-resolution hyperspectral cube. At the current stage we
estimate the threshold by visual detection of bright pixels in
the panchromatic high resolution image of the hyperspectral
camera.

The temperature of the water is also an important parameter
to get information about the actual state of a water body.
Using thermal cameras on UAV gives the possibility of
mapping the surface temperature of water bodies and to make
water mixing processes visible. Combined with additional
information e.g. weather and bathymetry it is possible to
model the temperature distribution in a reservoir. One
application of this data is the revealing of illegal sewage
water inflows. Further, the correlation between water
temperature and algae concentration could be used to enhance
the parameter estimation using the hyperspectral data [9].

Due to missing homologous points on the water surface
between single captured images, the geocoding of the data 3158



Figure 2: Passaúna reservoir, located in the west of Curitiba,
Brazil. Map data c©OpenStreetMap contributors.

is not straight forward and requires a more precise navigation
of the drone. In this study we used a RTK GNSS and a gimbal
stabilised sensor system to deal with this drawback. The
water surface is assumed to be flat and spatial uncertainties
of up to 2m are passable for mapping of water quality
parameters.

3. FIRST RESULTS – PASSAÚNA RESERVOIR

In this paper we present the first results of two field campaigns
at the Passaúna reservoir, located in the west of Curitiba,
State of Paraná, Brazil (see Figure 2). The shallow artificial
reservoir Passaúna has a water surface of about 9 km2 and a
mean depth of 6.5m [10]. The main inflow is in the northern
part of the reservoir where the water enters a so called buffer
area, which has the basic idea, that sediments can settle down
before the water enters the main reservoir. This buffer area
and the adjacent northern part of the main reservoir is the
most interesting area of the drinking water reservoir. It shows
a significant lateral gradient in turbidity, considerable flow
dynamics and large temporal variation caused by changing
inflow conditions. Therefore the investigations presented in
this paper focus on this area.

3.1. Data Acquisition

During two field campaigns in February and August 2018, we
acquired data with the sensor system presented in Section 2.1.
We have remote sensing data of visible RGB, thermal
infrared and hyperspectral VIS-NIR images for water quality
parameter estimation. At the same time in-situ measurements
where carried out and water samples where taken and
analysed in the lab. These form the ground truth dataset
for training and validation of the water quality estimation
algorithms.

During our first experiments we used a stop and go flight
mode to capture single images without motion blur. However
this caused unacceptable errors of the mosaicking of the
images due to too slow gimbal reaction. Therefore we
optimised our flight plans and now we use a continuous
velocity setting for each flight. With this setup the mosaicking

(a) Unprocessed thermal images.

(b) Drift and vignette corrected.

Figure 3: Radiometric correction of thermal images before (a)
and after (b) drift compensation.
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Figure 4: Temperature gradient at the buffer-reservoir link.
Figures on the left show the RGB and thermal infrared image.
The plots show the surface temperature along the two profiles.

errors are significantly reduced and more than one minute
of flight time can be saved. Investigations of the spectral
data from a test site with motion blur showed no significant
changes in comparison to unblurred data.

3.2. Water Surface Temperature

The thermal infrared images showed vignetting in each frame
and a drift from one frame to the next during a flight in winter
as shown in Figure 3(a). This figure shows two overlapping
images one captured at the beginning of the flight and one
10min later, where one would expect only insignificant
changes of the surface temperature. Analysis of the metadata
of each captured frame show a sensor temperature drift of
about 7 ◦C during the flight, which equals the offset between
the overlapping images. Using the software ThermoViewer
and further processing we were able to estimate a mean
vignette to correct each frame. After the vignetting correction
and the temperature drift compensation the frames perfectly
fit to each other. Only a remaining co-registration error due
to uncertainties in navigation and geometrical calibration are
left.

Another image captured at the same location in summer 3159
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Figure 5: PLS training and validation results for turbidity
estimation using four coefficients.

Figure 6: Turbidity gradient at the buffer-reservoir link. The
panchromatic grey image of the hyperspectral camera is

superimposed by turbidity estimates.

shows a strong gradient between the buffer area and the
reservoir (see Figure 4). The profiles show an increase of
the temperature from about 20 ◦C to more than 22 ◦C in this
scene. This confirms the assumption that the colder water of
the buffer submerges immediately under the warmer water of
the reservoir at the buffer-reservoir link.

3.3. Turbidity Estimation

The turbidity estimation is done using a partial least squares
regression (PLS) using absolute spectra, not reflectance
spectra. To estimate the coefficients we used spectra with
corresponding ground truth data. Figure 5 shows the results of
training and validation of the PLS with four coefficients. We
achieved a mean relative error of 8% which is an acceptable
result.

The turbidity estimation of the area around the passage
from the buffer to the main reservoir is shown in Figure 6. The
northward facing panchromatic grey image is superimposed
by the false colour visualisation of the turbidity estimation
for each hyperspectral pixel of the camera. Clearly visible
is the higher turbidity in the buffer and the significant lower
values south of the bridge after the water enters the main
reservoir. This strong gradient corresponds to the described
phenomenon in Section 3.2 and substantiates the above
described assumption.

4. CONCLUSION AND FURTHER WORK

In this paper we presented the setup of a lightweight remote
sensing system for water quality parameter estimation and
first results of two measurement campaigns at Passaúna
reservoir. Despite the early stage of evaluation, we
achieved promising results which we will improve by
optimisation of the hardware and processing setup. In a
first step the full integration of the irradiance correcting
spectrometer will be implemented for accurate reflectance
measurements. To achieve a better mosaicking of the images
we will use an enhanced geometric cross calibration of
the multi sensor system including the gimbal orientation.
Further investigations will focus on an enhanced parameter
estimation using machine learning and physical modelling
approaches.
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