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Gravitational capture is a characteristic of some dynamical systems in
celestial mechanics, as in the elliptic restricted three-body problem that is
considered in this paper. The basic idea is that a spacecraft (or any particle
with negligible mass) can change a hyperbolic orbit with a small positive
energy around a celestial body in an elliptic orbit with a small negative energy
without the use of any propulsive system. The force responsible for this
modification in the orbit of the spacecraft is the gravitational force of the third
body involved in the dynamics. In this way, this force is used as a zero cost
control, equivalent to a continuous thrust applied in the spacecraft. One of the
most important applications of this property is the construction of trajectories
to the Moon. The objective of the present paper is to study in some detail the
effects of the eccentricity of the primaries in this maneuver.

INTRODUCTION

Gravitational capture is the phenomenon where a particle, coming from outside
the sphere of influence of another body, may have its velocity relative to the celestial
body reduced and it can even stay in orbit around it temporary, using only gravitational
force’. This happens due to the change of the two-body energy of the massless body
from positive to negative relative to one of the primaries of the restricted three-body
problem. The two-body energy is constant in the two-body problem, but not in the three-
body problem, where there is no energy conservation due to the perturbation of the third
body. The importance of this study is that it can be used to decrease the fuel expenditure



for a mission going from one of the primaries to the other, like an Earth-Moon mission.
This is performed by applying an impulse to the spacecraft during the temporary capture
to accomplish a permanent capture.

The application of this phenomenon in spacecraft trajectories is recent in the
literature. Among the first studies are the ones performed by Belbruno®?; Krish*; Krish,
Belbruno and Hollister®; Miller and Belbruno®; Belbruno and Miller’. They all studied
missions in the Earth-Moon system that use this technique to save fuel during the
insertion of the spacecraft in its final orbit around the Moon. Another group of
researches that made fundamental contributions in this field, also with the main
objective of constructing real trajectories in the Earth-Moon system, are the Japaneses
Yamakawa, Kawaguchi, Ishii and Matsuo (see references 8 and 9). In particular,
Yamakawa wrote his Ph.D. Dissertation® in this topic, with several important
contributions in this field. A real application of those ideas was made during an
emergency in a Japanese spacecraft'’. After that, some studies that consider the time
required for this transfer appeared in the literature. Examples of this approach can be

find in the papers by Vieira-Neto and Prado***.

Some of those references show that the fuel consumption, in a transfer maneuver,
can be smaller than the one required by the Hohmann transfer. In this paper we consider
this problem under the model given by the elliptic restricted three-body problem. The
references that we found related to the gravitational capture for the elliptic case, like
Bailey**>*® and Heppenheimer®’ do not use the variation of the two-body energy as we
do in this paper.

THE ELLIPTIC RESTRICTED THREE-BODY PROBLEM

The equations of motion for the spacecraft are assumed to be the ones valid for
the well-known planar restricted elliptic three-body problem. We also use the standard
canonical system of units, which implies that:

1. The unit of distance is the semi-major axis of the orbit M; and My;

2. The angular velocity (o) of the motion of M; and M is assumed to be one;

3. The mass of the smaller primary (M) is given by p = - "lzm (where m; and m; are
1 2

the real masses of M; and My, respectively) and the mass of M is (1-u), to make the
total mass of the system unitary;

4. The unit of time is defined such that the period of the motion of the two primaries is
2m,

5. The gravitational constant is one.



There are several systems that can be used to describe the elliptic restricted
problem®. In this section the fixed (inertial) and the rotating-pulsating systems are
described.

In the fixed system the origin is located in the barycenter of the two heavy
masses M; and M. The horizontal axis is the line connecting M; and M, and the vertical
axis is perpendicular to the horizontal axis. In this system, the positions of M; and M,
are:

X, = —ur cosv 1)
y, =—ursinv (2)
X, =(1—p)rcosv (3)
Y, = (1—u)rsinv 4)
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where r is the distance between the two primaries, given by r=—— and v is the
1+ecosv

true anomaly of M,. Then, in this system, the equations of motion of the massless
particle are:
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where “ means the second derivative with respect to time, r; and r, are the distances
from M1 and M, given by:

I
x|

2= (x-%,) -(v-v,)° (7)
2 =(

Now, we will introduce the rotating-pulsating system of reference. In this
system, the origin is again the center of mass of the two massive primaries. The
horizontal axis (x) is the line that connects the two primaries. It rotates with a variable
angular velocity in a such way that the two massive primaries are always in this axis.
The vertical axis (y) is perpendicular to the x axis. Besides the rotation, the system also
pulsates in a such way to keep the massive primaries in fixed positions. To achieve this
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situation we have to multiply the unit of distances for the instantaneous value of the
distance between the two primaries (r). In a system like this one, the positions of the
primaries are:

Xp=-p,X,=1-n,y,=y,=0 (9)

In this system, the equations of motion por the massless particle are:

T X —X X=X

X—2y=—(x—(1—u) it J (10)
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y+2x= —(y—(l— W5 u—sj (11)
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and we also have an equation to relate time and the true anomaly of the primaries:
. r?
=" (12)
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where the overdot means derivative with respect to the true anomaly of the primaries
and p is the semi-lactus rectum of the ellipse.

The equations that relates one system to another are:

X = IXCcosv—rysinv (13)
Yy = rXsinv+ ry cosv (14)
x =(Xcosv+ysinv) / r (15)
y=(ycosv—Xsinv)/r (16)

for the positions and:
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y' =X'rsinv+Yy'r cosv— (18)
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for the velocities, where p=1-e*and r = ———.
1+ecosv

THE GRAVITATIONAL CAPTURE

To define the gravitational capture is necessary to use a few basic concepts from
the two-body celestial mechanics. Those concepts are:

a) Closed orbit: a spacecraft in a orbit around a central body is in a closed orbit if its
velocity is not large enough to escape from the central body. It remains always inside a
sphere centered in the central body;

b) Open orbit: a spacecraft in a orbit around a central body is in a open orbit if its
velocity is large enough to escape from the central body. In this case, the spacecraft can
go to infinity, no matter what is its initial position.

To identify the type of orbit of the spacecraft it is possible to use the definition of
the two-body energy (E) of a massless particle orbiting a central body. The equation is
2
E= %—E, where V is the velocity of the spacecraft relative to the central body, p is
r
the gravitational parameter of the central body and r is the distance between the

spacecraft and the central body.

With this definition, it is possible to say that the spacecraft is in a open orbit if its
energy is positive and that it is in a closed orbit if its energy is negative. In the two-body
problem this energy remains constant and it is necessary to apply an external force to
change it. This energy is no longer constant in the restricted three-body problem. Then,
for some initial conditions, a spacecraft can alternate the sign of its energy from positive
to negative or from negative to positive. When the variation is from positive to negative
the maneuver is called a "gravitational capture”, to emphasize that the spacecraft was
captured by gravitational forces only, with no use of an external force, like the thrust of
an engine. The opposite situation, when the energy changes from negative to positive is
called a "gravitational escape”. In the restricted three-body problem there is no
permanent gravitational capture. If the energy changes from positive to negative, it will
change back to positive in the future. The mechanism of this capture is very well
explained in references 8, 9 and 10.



ASSUMPTIONS TO STUDY THIS PROBLEM
To study this problem, we made several assumptions. There are:

1) The true anomaly (y) of the secondary body is the parameter used to study the
importance of the eccentricity in the problem (see Figure 1);

ii) The motion is planar;

1ii) The starting point of each trajectory is 100 km from the Moon’s surface (= 0.0045 in
canonical units from the center of the smallest primary). The angle o, from the line
joining the two primaries, shown in Figure 1, is used to compute the initial position;

iv) The magnitude of the initial velocity is calculated from a given value of C;3 = v* -
2u/ry, where v is the velocity of the massless body relative to the smallest primary. The
direction of the velocity is assumed to be perpendicular to the line joining the smallest
primary to the massless body in a counter-clock-wise direction;

V) The escape occurs when the spacecraft reaches a distance of 100.000 km (0.26 in
canonical units) from the center of the smallest primary in a time shorter than 50 days (~
12 in canonical units)®;

vi) For each initial condition, the trajectory were numerically integrated backward in
time. Every escape in backward time correspond to a gravitational capture in a forward
time.

Figure 1 - Configuration of the Bodies at t = 0 in the Elliptical Restricted Three-
Body Problem.



SOME RESULTS

As an example of the calculations that we made, we show the results for the
cases where the eccentricity of the primaries is kept constant and the true anomaly
assumes the values 0°, 90°, 180°, 270°. The Earth-Moon system is used, so the
eccentricity is fixed in the value 0.0549. Figure 2 shows the numerical results in plots
where the radial variable is the magnitude of C3 and the angular variable is the angle a.
Figure 3 shows the circular case, for comparison. We can see that the savings are greater
where the secondary body is at periapse (y = 0°), what is expected, since the smaller
distance between the two primaries increases the effect of the third body (the main cause
of the savings). We can also see the regions of maximum and minimum savings. When
the Moon is at the perigee, the differences between the circular and elliptic models are
very small. These differences are increased for the positions of o around 10°-20° and
340°-350°. At those points the values of Cs goes up to —0.22 canonical units for the
elliptic case, while for the circular case it stays in —0.21. Regions around 70°-80° are
also of interest.

The fact that the eccentric dynamics has larger savings when compared to the
circular one for some points is an important result. The eccentric dynamics represents
better the reality, and it is also possible to use it to obtain an extra savings, in the order
of 4.76% (from —0.21 to —0.22 canonical units).



Figure 2 - Minimum C; for the Earth-Moon System with y = 0°, 90°, 180°, 270°.

To study in more detail the effect of the initial true anomaly (angle y) in the
savings of energy, Figure 4 shows the variation of C; with y, when o is kept fixed.

This figure shows that the conditions in o are more important than in y for the
values of the eccentricities simulated. When the true anomaly changes, keeping o
constant, the minimum energy is almost the same. In the case where o = 0°, the perilune
are at the apposite side of the Earth, and this geometry allows the minimum values of Cs.



270°
Figure 3 - Minimum C; for the Earth-Moon System Assuming the Circular Case.

For o = 180° the minimum energy does not reach levels of energy as low as for
the case o = 0° but it shows regularity and levels of energy lower than in the cases o =
90° and o = 270°. In realistic cases, it is possible to make the transfers when y = 0°, since
there are disadvantages in terms of the potential savings in the cases y = 0°.

Then, some hypothetical systems are studied, with the goal of having more
details about the effect of the eccentricity in this problem. Figure 5 shows results when p
= 0.01, and the eccentricities of the primaries are 0.0, 0.2, 0.4 and 0.8. The true anomaly
assume the values 0°, 90°, 180° 270° for every value of the eccentricity. In this figure,
the magnitude of C3 in canonical units is the radial variable and the angle o is the
angular variable. The eccentricity is 0.0 for the first plot, 0.2 for the second, 0.4 for the
third and 0.8 for the fourth one. It is clear that the lowest level of energy appears when
the smaller primary is at periapse (y = 0°) and the worst results appear when it is at the
apoapses (y = 180°). When y = 90° and y = 270° there are intermediate results. This is
expected, because the smaller distance between the primaries increase the third body
perturbation, that is the main cause of the reduction of energy. From those results it is
also possible to conclude that, by increasing the eccentricity, there is an increase in the
differences of the level of energy for the families y = 0° 90°, 180°, 270° (those families
appears with more difference from each other). It is also possible to conclude that the
increase of the eccentricity makes the levels of savings to increase. The radial scales
goes from 0.2 (for e = 0.0) to 0.8 (for e = 0.8). Those figures also show the importance



of the choice of the angle a. The differences in the magnitude of C; obtained by
different values of this parameter are very large.

270° 270°
Figure 4 — Minimum Value of C, vs. y for a Constant.
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Figure 5 — Minimum C; for u = 0.01 and Several Values of the Eccentricity.

EFFECTS OF THE ECCENTRICITY IN THE TIME REQUIRED FOR THE
CAPTURE

For this analysis, the energy C3; = —0.14 was choose and fixed. Two situation
were studied. In the first one the eccentricity was fixed in 0.4 and the true anomaly
varied from 0° to 270° in steps of 90°. These results are shown in Figure 6. In this figure
the radial variable is the time of capture in canonical units and the angular variable is the
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angle a.. There are four positions for the Moon, where y = 0° is the position closest to the
Earth and y = 180° is the position with more distance from the Earth. Each point
corresponds to one trajectory.

After that, the true anomaly was fixed in 0° and the eccentricity was varied to
assume the values 0.0, 0.2, 0.4 e 0.8. These results are shown in Figure 7. Those systems
of primaries are similar to the Earth-Moon system, with the eccentricities increased to
emphasize the results.

The plots show the existence of two families of trajectories. There are large
variations in the time required for the capture, depending on the initial value of the angle
a.. This fact shows the importance of this study, because you can get shorter times for
the transfer for a fixed value of the energy savings.

Looking at the plots for y = 0° and y = 90°, in Figure 6, the change in the results
are small, because the majority of the captures has a time smaller than two canonical
units. Looking at the case y = 180°, it is possible to see larger changes in the plots. Two
new families of trajectories appears and the majority of them have times of capture
between two and four canonical units of time. The largest distance between the two
primaries in this geometry reduces the gravitational perturbation and increases the time
to complete the capture. The results for y = 270° shows the return of the two
characteristic families. Larger values for the time of capture, when compared to the case
y = 0° still appears and the number of trajectories that do not belong to the family
increases.
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y=270°

v =180°

Figure 6 — Times for the Capture for Eccentricity of 0.4.
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Figure 7 — Times for the Capture for y = 0°.

Figure 7 shows the effect of the eccentricity in the time for the capture when y =
0° and the eccentricity is varied. In this figure, the radial variable is the time of capture
in canonical units and the angular variable is the angle a. Every point represents one
trajectory. The characteristic of the problem of having two families is still valid here,
this time for all the plots showed.

Those studies show that there is a measurable effect of the increase of the
eccentricity for a fixed value of the true anomaly. In general, there is a tendency to
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reduce the time of capture with the increase of the eccentricity. This is also explained by
the reduction of the distance between the primaries, since the positions studied is held
constant at the periapses. Strong effects appears for large values of the eccentricity (like
in e = 0.8), where the two families rotate in the clock-wise direction, staying almost
horizontal. This means that the value of o that allow minimum and maximum times of
capture changes. These results can be used in optimization problems, like the ones
shown below.

OPTIMIZATION PROBLEMS

Several optimization problems can be solved using the results available in this
research. Two of them are shown below.

Problem 1: Suppose that it is necessary to build a trajectory that ends in
gravitational capture in a given system of primaries and for a fixed value of r,.
Assuming that u = 0.0121506683 (Earth-Moon system), it is desired that this trajectory
has the minimum possible time of flight, but with C; = —0.14 and r, = 0.004781477.
Figures 6 and 7 are used to solve this problem. This problem is solved for the
eccentricities e = 0.0, 0.2, 0.4 and 0.8. The values for the true anomaly are y = 0°, 90°,
180° and 270°. The results are shown in Table 1. It includes the angle o and the time of
capture. The savings in AV obtained is 0.031296 canonical units for all the cases, since
Cs is constant.

TABLE 1 — SOLUTIONS FOR PROBLEM 1

e\y 0° 900 1800 | 270°
0 o = 338°
t=0.7482 |

0.2 o =311° 3350 3330 3310
t=0.6033 | 0.6576 | 0.9452 | 0.7656
0.4 o = 325° 3120 3540 3300
t=0.4556 | 0.5402 | 1.3657 | 0.7016
0.8 o, = 2920 281° 3150 3300
t=0.1735 | 0.1797 | 2.6443 | 0.3882

The results are in agreement with the general rule that says that, when getting the
primaries closer, the perturbation is larger and the time for the capture is smaller. For a
fixed value of the eccentricity, the times are smaller for y = 0° and larger for y = 180°.
For a fixed value of the true anomaly, the time decrease with the increase of the
eccentricity for y = 0° and it increases when y = 180°. This means that the differences
between the times of capture for different locations of the primaries increase with the
eccentricity. The general conclusion is that, taking into account the effects of the
eccentricity of the primaries, it is possible to design a trajectory the has the minimum
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time of capture. The regions of values of o does not change much, and the solutions are
around o = 300° + 30°. Figure 8 shows the trajectory of a space vehicle for the circular
solution, as seen in the rotating frame.

0.00 ° e Moon

| Earth qu
-0.02

-0.04
> | /

-0.06

-0.08 /

-0.10

-0.20 0.20 0.60 1.00
X

Figure 8 — Trajectory of Problem 1.

This type of problem can be solved for different values of u, r,, Cs, etc. Similar
problems with more degrees of freedom (like free rp) can also be solved with the same
technique.

Problem 2: Another variant of optimization problems that can be solved with the
data shown here, is the problem of searching a gravitational capture trajectory that has a
maximum savings subject to constraints in time, like a maximum time allowed for the
maneuver. Figures 6 and 7 are also used to solve this problem. Assume that the Earth-
Moon system is used and the value of r, = 0.004781477 is required, together with the
time limit of 0.8 canonical units of time for the maneuver. Again, four possibilities for
the eccentricities and for the true anomaly are used. Table 2 shows the results.
Compared with the circular solution, it is clear that for a fixed value of the eccentricity,
C3 reaches a minimum for y = 0° and a maximum for y = 180°.

Then, the maximum savings for a problem with an upper limit of time is reached
for the position y = 0° It is also noted that C; decreases with the increase of the
eccentricity for y = 0° and that it increases when y = 180°.
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Then, the differences in energy for several final conditions of a specific
trajectory increase with the increase of the eccentricity of this trajectory. The general
conclusion is that, when we take into account the eccentricity of the primaries, it is
possible to design a maneuver with maximum savings for a given time limit for the
capture. The region of o that solves this problem is around 330° + 15°. Figure 9 shows
the trajectory of a spacecraft for the solution of the circular case, as seen from the
rotating system. Solutions for other cases can be obtained by solving a perticular
problem or interpolating the tables available.

TABLE 2 — SOLUTTIONS FOR PROBLEM 2
e\y (03 90° 1800 | 270°
0 C;=-0.15 — — —

a=38 | — | — | —

02 | C3=-0.19 | -0.17 | -0.11 | -0.14
o = 338 3210 | 346° | 331°
04 | C3=-028 | -0.24 | -0.09 | -0.16
o = 328 3420 [ 328° | 330°

0.8 C;=-0.85 | -0.71 | -0.07 | -0.34
o = 3280 333 | 346° | 3300

0.02 |
| Earth /‘\Moon
0.00 o VJ
-0.02
> |
-0.04
-0.06
-0.08
-0.20 0.20 0.60 1.00

X
Fig. 9 — Trajectory for Problem 2.
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CONCLUSIONS

We developed a numerical algorithm to study the problem of gravitational
capture in the elliptical restricted three-body problem. The effect of the true anomaly for
a fixed eccentricity and the effect of the eccentricity for a fixed true anomaly were
studied.

From the results available, it is possible to conclude that the elliptic restricted
three-body problem has some diffrences in the results, when compared with the circular
case. These differences can be used in real missions to obtain some extra savings in fuel
or in time for the maneuver. Figure 5 showed the locations and the magnitude of the
differences between the two mathematical models and can be used to find optimal points
for the maneuver.

The main effect of the eccentricity is to decrease the two-body energy. Another
important effect is that, if C3 is hold fixed, the time for the capture is reduced when we
increase the eccentricity.

Regarding the true anomaly, the periapsis (y = 0°) is the best location for the
gravitational capture, because it has the larger savings in terms of energy and smaller
times of capture.

The results showed in this paper also allow us to formulate and solve several
practical problems involving optimization of parameters. Two examples were proposed
and solved: 1) To find a trajectory that has a fixed energy and the minimum time of
capture and; 2) to find one trajectory that has the minimum energy with a limit time for
the capture. Both solutions were shown in details.
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