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The effects of noise in the dynamics of Alfvén waves described by the derivative nonlinear
Schrödinger equation are investigated. In a complex region of the parameter space, where
multistability is observed, an external stochastic source can effectively destroy attractors present in
the noise-free system, as well as induce chaotic transients and extrinsic intermittency. In the
intermittent regime, the Alfvén wave exhibits random qualitative changes in its behavior as a result
of a competition between three attractors and a chaotic saddle embedded in the fractal basin
boundary. © 2006 American Institute of Physics. �DOI: 10.1063/1.2186527�
I. INTRODUCTION

Chaos theory provides powerful tools for the study of
theoretical and experimental plasma systems. In laboratory
plasmas, Cheung and Wong1 reported the experimental ob-
servation of chaotic behavior in a pulsed plasma discharge,
with a calculation of the Feigenbaum constant for a period-
doubling route to chaos. The period-doubling route to chaos
was also studied by Greiner et al.2 by comparing results from
a filament cathode discharge with particle-in-cell simula-
tions. Sheridam3 conducted the experimental characterization
of chaotic dynamics in a complex �dusty� plasma of three
particles, with the detection of an attractor with fractal di-
mension and a positive Lyapunov exponent.

Most theoretical works on chaotic dynamics in plasmas
are based on noise-free numerical simulations. In this paper
we are concerned with the analysis of Alfvén waves in mul-
tistable systems in the presence of noise. In dynamical sys-
tems, multistability refers to the simultaneous presence of
more than one attractor for a given value of the control pa-
rameter. Attractors are the asymptotic states in dissipative
systems, and multistability can be an obstacle for prediction,
since the asymptotic state may depend crucially on the initial
condition. Thus, knowledge about the attractors and their re-
spective basins of attraction is essential for understanding the
dynamics of multistable systems.

There is a number of theoretical works on multistability,
both in mathematical models and real plasma experiments. A
mathematical model for drift waves studied in Refs. 4 and 5
in relation to the transition to spatiotemporal chaos was
shown to exhibit hysteresis loops, which correspond to mul-
tistability. Chian et al.6 characterized the origin, evolution,
and destruction of attractors in a complex region of the pa-
rameter space of the derivative nonlinear Schrödinger equa-
tion, where up to four different attractors coexist. Hahn and
Pae7 reported the observation of competing multistability in
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plasma diode systems by using one-dimensional particle-in-
cell simulations. Intrinsic numerical noise is found to be re-
sponsible for causing attractor hopping, resulting in a com-
plicated time series.7,8 Coninck et al.9 investigated the
coexistence of a large number of periodic attractors in a sys-
tem of four waves interacting by means of nonlinear cou-
pling between two wave triplets. Multistability has also been
reported in experimental plasma systems. Chern and I10 per-
formed an experimental study of bifurcations leading to hys-
teresis in a weakly ionized cylindrical rf magnetoplasma sys-
tem. Sun et al.11 investigated multistability and crisis-
induced intermittency in experiments with a plasma
discharge system.

In this paper we focus on the role of noise in the gen-
eration of transient and intermittent behavior in Alfvén
waves modeled by the derivative nonlinear Schrödinger
�DNLS� equation, where multistability is observed. Alfvén
waves are ubiquitous in space and laboratory plasmas, and
are important to plasma heating and particle acceleration in
the solar corona,12,13 auroral,14 as well as tokamaks and other
laboratory plasmas.15,16 We show that noise can couple at-
tracting and nonattracting chaotic sets �chaotic saddles� in
the phase space of the DNLS equation, resulting in complex
intermittent dynamics of an Alfvén magnetic field. In Sec. II
we describe the driven-dissipative DNLS equation and its
stationary solutions. In Sec. III we present a region of the
parameter space of the DNLS equation with multistability
and discuss the origin and destruction of attractors and their
basins of attraction. By adding noise to the DNLS equation,
we show in Sec. IV that it is possible to generate extrinsic
transient behavior that is similar to the dynamics after an
attractor-destruction crisis �boundary crisis� in noise-free
systems.6,17,18 In Sec. V we show that noise can induce in-
termittent behavior similar to the intermittency observed af-
ter an attractor merging crisis.18–20 The conclusions are given

in Sec. VI.
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II. THE DERIVATIVE NONLINEAR SCHRÖDINGER
EQUATION

The nonlinear spatiotemporal evolution of Alfvén waves
can be modeled by the driven-dissipative derivative nonlin-
ear Schrödinger equation �DNLS�,21

�tb + ��x��b�2b� − i�� + i���x
2b = S�b,x,t� , �1�

where the wave is propagating along an ambient magnetic
field B0 in the x direction, b=by + ibz is the complex trans-
verse wave magnetic field normalized to the constant ambi-
ent magnetic field, � is the dissipative scale length, time t is
normalized to the inverse of the ion cyclotron frequency
�ci=eB0 /mi, space x is normalized to cA/�ci, cA

=B0 / ��0�0�1/2 is the Alfvén velocity, �=1/ �4�1−���, �
=cS

2 /cA
2 , cS= ��P0 /�0�1/2 is the acoustic velocity, and � is the

dispersive parameter. The external forcing S�b ,x , t�
=A exp�ik�� is a monochromatic left-hand circularly polar-
ized wave with a wave phase �=x−Vt, where V is a constant
wave velocity, A is the driver amplitude, and k is the driver
wave number.

By seeking stationary solutions with b=b���, and setting
�tb=0, the first integral of Eq. �1� reduces to a low-
dimensional system of coupled ordinary differential equa-
tions,

ḃy − 	ḃz = �H/�bz + a cos 
 , �2�

ḃz + 	ḃy = − �H/�by + a sin 
 , �3�


̇ = � , �4�

where H= �b2−1�2 /4− �� /2��b− ŷ�2, the overdot denotes the
derivative with respect to the phase variable 
=�b0

2� /�, 	
=� /� is the normalized dissipation parameter, b→b /b0

�where b0 is an integration constant�, b= �by ,bz�, 
=��, �
=�k / ��b0

2�, a=A / ��b0
2k�, �=−1+V / ��b0

2�. We assume �
�1, hence ��0.

In order to study the nonlinear dynamics of the system
�2�–�4�, we treat the phase variable 
 as a “time” variable and
define the following Poincaré map:

P:�by�
�,bz�
�� → �by�
 + T�,bz�
 + T�� , �5�


 → 
 + T , �6�

where T=2� /� is the driver period and b�
� represents the
value of b at time 
. Thus, one iteration of the Poincaré map,
P�b�
��, corresponds to integrating Eqs. �2�–�4� from time 

to time 
+T. This type of projection defined in fixed time
intervals is called stroboscopic projection, or the time-T map.
In the following sections we use 
=0 for the initial phase and
generate trajectories in the plane �by ,bz� by plotting one
Poincaré point at each value of 
+nT, n=1,2 , . . . .

III. MULTISTABILITY IN THE DNLS EQUATION

The nonlinear system described by Eqs. �2�–�4� can dis-
play a wealth of dynamical phenomena depending on the
choice of control parameters and initial conditions. Chian et

6
al. identified a range of 	 for which there is a coexistence of
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attractors in the DNLS equation. Four different attractors are
plotted in the bifurcation diagram of Fig. 1�a�, where we set
a=0.1, �=−1 �=1/4, �=1/2 and plot the Poincaré points
of bz vs.. 	. Attractor A1 corresponds to a stable periodic
Alfvén wave of period 1 in the Poincaré map. Attractor A2 is
born in a saddle-node bifurcation at 	�0.0227 as a period-3
periodic wave and suffers a period doubling cascade route to
chaos as 	 is decreased. The chaotic attractor A2 disappears
abruptly at 	�0.015 14 in a global bifurcation known as a
boundary crisis �BC�.17 Attractor A3 suffers a similar se-
quence of bifurcations, starting as a period-9 stable periodic
wave at a saddle-node bifurcation at 	�0.017 816 2 and
ending in a boundary crisis at 	�0.017 477 1. Attractor A4

is born as a period-3 stable wave at 	�0.019 and ends in a
boundary crisis at 	�0.016 853. There is a fifth attractor,
not shown in Fig. 1�a�, which exists in a tiny region of the
bifurcation diagram around 	�0.017 145. Thus, the small
range of 	 between 0.014 and 0.024 encloses at least five
different attracting sets.

The mechanisms of creation and destruction of the at-
tractors of Fig. 1�a� are illustrated in Fig. 1�b�, which is an
enlargement of Fig. 1�a� showing three of the nine branches
of the bifurcation diagram of attractor A3. The dashed lines
denote the Poincaré points of a period-9 unstable periodic
wave created simultaneously with the stable periodic wave at
the saddle-node bifurcation at 	�0.017 816 2, indicated as
SNB. As 	 is decreased, the unstable wave approaches the

FIG. 1. �a� Bifurcation diagram, bz vs. 	, for Eqs. �2�–�4� showing the evo-
lution of four distinct attractors �A1, A2, A3, and A4�; �b� enlargement of a
portion of �a� showing attractor �A3�. BC denotes the boundary crisis and
the dashed lines represent the unstable periodic orbit responsible for the
crisis.
chaotic attractor evolved from the cascade of period dou-
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bling bifurcations of A3, and at 	�0.017 477 1 the two sets
collide head on, causing the boundary crisis �BC�, which is
responsible for the destruction of A3. This crisis was studied
in detail in Chian et al.6

We now focus on the dynamics at 	=0.017 46, where
three periodic attractors coexist. In the Poincaré map a
period-n periodic wave turns into a set of n points. Figure 2
depicts the Poincaré map of attractors A1 �circle, period 1�,
A2 �triangles, period 3� and A4 �squares, period 6�, and their
basins of attraction. The basin of attraction is the set of
initial conditions in the �by ,bz� phase plane that converge to
a given attractor. Hence, the white region in Fig. 2 is the
basin of A1, dark gray represents the basin of A2 and light
gray the basin of A4. The basin boundaries display a com-
plex structure in most of the phase plane, where the three
basins seem to mingle. This complex structure is scale in-
variant, a typical property of fractal sets. Embedded in the
basin boundary, we numerically found a nonattracting cha-
otic set known as a chaotic saddle. Chaotic saddles are ubiq-
uitous in nonlinear systems and are chiefly responsible for
transient chaotic motion.17,22,23 The chaotic saddle in Fig. 3
was found with the sprinkler method,22 and its role in attrac-
tor hopping and Alfvén intermittency is discussed in the fol-
lowing sections.

IV. NOISE-INDUCED TRANSIENTS AND ATTRACTOR
DESTRUCTION

We introduce an external stochastic source in the Alfvén
system by adding noise terms gy�t� and gz�t� to Eqs. �2� and
�3�, respectively, where gy�t� and gz�t� are provided by a
random numbers generator with a Gaussian distribution with
zero mean and standard deviation �. The effect of noise in
the bifurcation diagram for attractor A4 is seen in Fig. 4.
Figure 4�a� displays the noise-free diagram ��=0�, and Fig.
4�b� shows the same diagram for �=0.0025, where the cas-
cade of period doubling bifurcations is obscured by noise

FIG. 2. Periodic attractors A1 �circle�, A2 �triangles�, and A4 �squares� and
their basins of attraction in white �A1�, dark gray �A2�, and light gray �A4�,
at 	=0.017 46.
and the transition to chaos cannot be precisely determined.

ownloaded 16 Jun 2006 to 150.163.34.101. Redistribution subject to 
Figure 4�b� is much more realistic than Fig. 4�a�, since noise
is always present in nature. Figure 4�b� is similar to real
bifurcation diagrams found in plasma experiments.1,2

Figure 5 illustrates the effect of noise on the time series
of bz for period-6 attractor A4 at 	=0.017 46. Figure 5�a�
displays the noise-free ��=0� time-2� time series in terms of

FIG. 3. Chaotic saddle on the boundary separating the basins of attraction at
	=0.017 46.

FIG. 4. �a� Noise-free ��=0� bifurcation diagram for attractor A4; �b� noisy

bifurcation diagram for �=0.0025.
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the driver cycles and Fig. 5�b� show the same time series for
�=0.0032. The corresponding power spectra are shown in
Figs. 5�c� and 5�d�, respectively. The spectrum in Fig. 5�d�
contains the same spikes of Fig. 5�c�, indicating the predomi-
nant frequencies of the solution. In addition, the spectrum of
the noisy periodic wave shown in Fig. 5�d� has a continuous,
broadband nature, typical of chaotic Alfvén waves.24 It is
also a feature found in power density spectra of turbulent
Alfvénic fluctuations observed in the solar wind.25,26

The noisy basins of attraction for A1, A2, and A4 are
plotted in Fig. 6, together with the �by ,bz� Poincaré points of
A4. Note that in the presence of noise A4 resembles a chaotic
attractor, stretching along directions for which attraction is
weakest, as previously noted by Gwinn and Westervelt.27,28

The bigger the noise, the more stretched is the attractor, so
that initial conditions in the light gray region of Fig. 6 will
produce Alfvén waves that are confined to this basin as long
as A4 does not touch its basin boundary. If the noise level is
strong enough to stretch A4 beyond its basin boundary, the

FIG. 5. Time-2� time series of bz in terms of the driver cycles for period-6
attractor A4 at 	=0.017 46 �a� without noise; �b� with Gaussian noise using
a zero mean and a standard deviation of �=0.0032; �c� and �d� the corre-
sponding power spectra.

FIG. 6. Basins of attraction and attractor A4 at 	=0.017 46 in the presence
of noise ��=0.0032�. The enlarged attractor A4 does not touch its basin

boundary.
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Alfvén wave “escapes” from the gray region, wanders for a
short time in the complex boundary region before settling to
a different attractor, when an attractor hopping occurs.29,30

Figure 7�a� shows attractor hopping from A4 to A2 then to
A1, when noise is set to �=0.005 44. In Fig. 7�b� the
Poincaré map corresponding to the time series in Fig. 7�a� is
plotted over the noisy basins of attraction. Since A1 has a
wide basin, this noise level is not strong enough to “kick” the
wave out of the white basin, and the noisy A1 attractor is the
asymptotic state of each initial condition in Fig. 7�b�. Thus,
the hopping between attractors A4 and A2 constitutes a
noise-induced, or extrinsic, transient dynamics.

The generation of noise-induced transients is akin to an
attractor destruction due to a boundary crisis. Recall from
Fig. 1�a� that attractor A2 is destroyed in a boundary crisis at
	=	BC�0.015 14. Thus, for 	�0.015 14 initial conditions
in the region of the phase plane previously occupied by A2

will eventually leave this region, moving to another attractor.
It has been shown that the average transient time before the
wave leaves the region previously occupied by the destroyed
attractor depends on the value of the control parameter in
relation to the critical crisis value.18 Hence, for 	 very close
to 	BC the magnetic field of Alfvén waves will oscillate for a
long transient time in the region of A2 before leaving it. As 	
is decreased away from 	BC, the average transient time de-
creases proportionally. This effect is illustrated in Figs.
8�a�–8�c� for three different values of 	 just before �	
=0.015 14, Fig. 8�a��, right after �	=0.015 13, Fig. 8�b��,

FIG. 7. �a� Noise induced transient for �=0.00544 at 	=0.017 46, showing
attractor hopping from A4 to A2, then to A1; �b� Poincaré map of the time
series in �a� with basins of attraction.
and farther away �	=0.015 12, Fig. 8�a�� from crisis. By
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adding noise to the system we are able to see a similar effect
without changing the control parameter 	. In Figs. 8�d�–8�f�
the time series of A2 are plotted for 	=0.017 46, away from
the crisis point, still in the periodic regime of A2 �see Fig.
1�a��. For �=0.002 72 the dynamics is still confined to the
basin of attraction of A2 �Fig. 8�d��, but resembles the noise-
free chaotic time series of Fig. 8�a�. By increasing the noise
level to �=0.002 88 we see an attractor hopping from A2 to
A1 after a long transient �Fig. 8�e��. With larger noise ��
=0.003 04� the transient is shortened �Fig. 8�f��. Evidently,
the duration of transients is also related to the initial condi-
tions, and a precise determination of the critical noise level
for attractor hopping to occur must rely on the average
among several initial conditions and long time series.30 The
important conclusion here is that the presence of noise in an
Alfvén system can lead to an attractor destruction, with the
dynamics on their basins becoming transient, just as occurs
after a boundary crisis. This type of noise-induced crisis was
extensively studied by Sommerer et al.31

V. NOISE-INDUCED INTERMITTENCY AND
ATTRACTOR MERGING

In the previous section it was shown that for 	
=0.017 46 a small amount of noise ��=0.00544� in Eqs.
�2�–�4� can drive the solutions from attractors A2 and A4 to
A1. In order to induce an “escape” from attractor A1 it is
necessary to increase �, since the basin of attractor A1 is
much wider than the basins of A2 and A4. For large enough

FIG. 8. Intrinsic �a�–�c� and extrinsic �d�–�f� chaotic transients. �a� Chaotic
time series of A2 just before a boundary crisis at 	=0.015 14; �b� chaotic
transient right after the boundary crisis of A2 at 	=0.015 13; �c� reduction of
the transient time farther away from crisis at 	=0.015 12; �d� noise induced
chaos in A2 at 	=0.017 46 with �=0.002 72; �e� chaotic transient at 	
=0.017 46 due to increased noise ��=0.002 88�; �f� reduction of the tran-
sient at 	=0.017 46 following increase in noise ��=0.003 04�.
�, trajectories on the basin of A1 can cross the basin bound-
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ary, moving toward a different attractor. The noise will, then,
trigger attractor hopping until the trajectory eventually is re-
injected into the basin of A1. This process repeats intermit-
tently, generating the noise-induced �or extrinsic�
intermittency.27

Figure 9 depicts a time-2� time series at 	=0.017 46
for �=0.064. Most of the time the value of the bz component
of the Alfvén magnetic field oscillates around 0.78, in the
vicinity of A1. There are several intermittent “bursts” to
lower values of bz, indicating an excursion of the trajectory
through a different region of the �by ,bz� phase plane. The
triangles and squares indicate when the trajectory is in the
vicinity of attractors A2 and A4, respectively. We consider a
vicinity defined as the disk with radius equal to � around the
fixed points of the periodic attractors in the Poincaré map.
Figure 9�b� is an enlargement of a part of Fig. 9�a� �indicated
by the bar� showing attractor hopping. Note that in every
burst there are some points that are not in the vicinity of
either A2 or A4. Those points represent the time the trajec-
tory spends around the complex basin boundary region, be-
fore converging to the vicinity of an attractor. This dynamics
is shown in the Poincaré map in Fig. 10, where we plot the
noisy basins of attraction and the Poincaré points corre-
sponding to the time series of Fig. 9. Most points concentrate

FIG. 9. �a� Noise induced intermittency at 	=0.017 46, for �=0.064. Tri-
angles are plotted whenever the orbit is in the vicinity of attractor A2 and
squares refer to the vicinity of A4. Circles represent points in the vicinity of
A1 or the surrounding chaotic saddle �CS�. �b� Enlargement of an interval in
�a�.
in a stretched region around A1 and the scattered points rep-
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resent the intermittent bursts. From Fig. 10 it can be seen that
noise is responsible for merging the three attractors, generat-
ing a much wider attractor.

A comparison between Fig. 10 and Fig. 3 reveals that in
each burst the trajectory visits the neighborhood of the cha-
otic saddle. This occurs because, although the chaotic saddle
is not attracting, it possesses a stable manifold, which is a
fractal set in the phase plane whose points display trajecto-
ries that converge to the chaotic saddle.32 Numerical uncer-
tainties and/or extrinsic noise will always drive trajectories
away from the stable manifold, thus, orbits close to the stable
manifold will first approach the chaotic saddle, then display
chaotic motion for a finite time, before moving toward some
attractor. In the present case, the stable manifold is the
boundary between the basins of attraction shown in Fig. 2.
When noise drives a trajectory toward the basin boundary,
the boundary leads it to the vicinity of the chaotic saddle.
That is the reason why the black points in Fig. 10 are not
spread throughout the whole phase plane.

The noise-induced Alfvén intermittency displays the fol-
lowing sequence of states: Ai→chaotic saddle→Ai

→chaotic saddle→Ai→chaotic saddle ···, where i is either
1, 2, or 4 and represents the time the trajectories are in the
vicinity of the noisy periodic attractors.

VI. CONCLUSION

We have studied the dynamics of Alfvén waves in a
multistable regime of the derivative nonlinear Schrödinger
equation in the presence of noise. For low level noise, attrac-
tor hopping occurs until the wave settles to an attractor with
a wide basin of attraction. In this case, the effect of noise is
similar to an attractor destruction due to boundary crisis,
with the generation of transient motion in the vicinity of the
destroyed attractors �extrinsic transient�. For a higher level of
noise, intermittent attractor hopping sets in �extrinsic inter-
mittency�, and trajectories have access to a wide region of
the phase space, which includes three attractors and a chaotic

FIG. 10. Basins of attraction and Poincaré points of the intermittent noisy
trajectory of Fig. 9 at 	=0.017 46. The trajectory spends most of the time in
the basin of A1, and hops among A1, A2, and A4 through the chaotic saddle
in the basin boundary. The noise level is �=0.064.
ownloaded 16 Jun 2006 to 150.163.34.101. Redistribution subject to 
saddle embedded in the basin boundary. In both cases �ex-
trinsic transient and extrinsic intermittency�, the noise is re-
sponsible for “hiding” the attractors of the noise-free system,
as previously pointed by Kraut et al.30 Since noise sources
are always present in space and laboratory plasmas, it is
possible that the transient and intermittent phenomena ob-
served in real data are in fact a signature of multistable re-
gimes in the presence of noise.

Finally, we stress that knowledge of the different attrac-
tors and chaotic saddles of a system opens the possibility of
using control techniques to suppress the random bursts of
amplitude jumps in the intermittent regime, as recently
shown by Meucci et al.33 for a model and in a real experi-
ment with a CO2 laser. Such technology may be of interest
for turbulence control in confined plasmas.
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