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[1] We present an overview of observational and theoretical evidence of chaos and
intermittency in the solar-terrestrial environment including solar dynamo, solar
atmosphere, solar wind, and terrestrial magnetosphere-ionosphere-atmosphere. The
chaotic nature of space plasmas is studied by a nonlinear model of Alfvén waves described
by the low-dimensional limit of the derivative nonlinear Schrödinger equation given by
its stationary solutions in the frame moving with the driver wave velocity. A periodic
window of the bifurcation diagram is constructed to identify two types of Alfvén chaos
related to type-I intermittency and crisis-induced intermittency. We show that an Alfvén
chaotic attractor is composed of chaotic saddles and unstable periodic orbits and explain
the links between these unstable structures and Alfvén intermittency. The role of
interplanetary Alfvén intermittency in the solar wind driving of intense geomagnetic
activities is discussed.
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1. Introduction

[2] Sun-Earth system is a complex, electrodynamically
coupled system dominated by nonlinear interactions. The
complex behaviors of the solar-terrestrial system, e.g., the
phenomena of solar flares and magnetospheric substorms,
are an indication that it is in a state far from equilibrium
whereby instabilities, nonlinear waves, and turbulence play
key roles in the system dynamics. One of the ubiquitous
features of the complex space environment is the occurrence
of intermittency and chaos in solar dynamo, solar corona,
solar wind, and Earth’s magnetosphere-ionosphere-atmo-
sphere. Intermittency is characterized by abrupt changes
of the physical variables in space and/or time, e.g., the
variation of the amplitude or phase of the solar wind
magnetic field, with alternating periods of quiescent low-
level fluctuations and bursting high-level fluctuations; it
displays multiscale behaviors with power-law spectrum in
frequency and wave number, as well as non-Gaussian
statistics in the probability distribution function of fluctua-
tions. Chaos is characterized by aperiodic fluctuations in
space and/or time, which are sensitive to small changes in
the initial conditions and system parameters. We present

first an overview of previous results related to the observa-
tional and theoretical evidence of intermittency and chaos in
the solar-terrestrial environment.
[3] Solar activity, including the dynamics and structure of

the solar atmosphere, is controlled by the magnetic fields
generated by the combined action of convection and differ-
ential rotation of a nonlinear dynamo in the solar interior
[see, e.g., Weiss and Tobias, 2000; Gómez et al., 2004]. The
observed time series of sunspot cycles is intermittent,
showing periods of large-amplitude cyclic fluctuations
which are irregularly interrupted by quiescent periods
of reduced magnetic activity, called the grand minima, such
as the Maunder Minimum and the Spoerer Minimum
[Kremliosvsky, 1995; Moussas et al., 2005]. Simulations
of a mean-field model of solar dynamo show many features
seen in the solar cycle, such as quasi-periodicity, intermit-
tency, and long periods of low activity [Hoyng, 1993].
Kurths et al. [1993] found chaos in numerical simulations
of both three-dimensional (3-D) MHD and simplified low-
dimensional mean field models of nonlinear dynamo. A
simple third-order model of solar dynamo suggests that
modulation of the solar cycle is chaotic, described by a
bifurcation diagram, which can explain the recurrent fea-
tures of grand minima [Tobias et al., 1995]. Ossendrijver
and Covas [2003] reported the evidence of crisis-induced
intermittency due to attractor-widening in a 2-D solar
dynamo model driven by the buoyancy instability of mag-
netic flux tubes and showed that the average duration of the
grand minima follows a theoretically predicted scaling.
Charbonneau et al. [2004] showed that a solar cycle model
based on the Babcock-Leighton mechanism of poloidal field
regeneration can exhibit intermittency in the presence of
low-amplitude noise. Numerical simulations of the solar
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magnetic activity cycle show a well-defined transition to
chaos via period-doubling bifurcations [Charbonneau et al.,
2005].
[4] In a 2-D simulation of MHD turbulence of solar

active regions, Dmitruk et al. [1998] showed that the energy
dissipation rate as a function of time of a coronal loop
displays the relaxation of the system to a stationary regime
with intermittent behavior, in the form of impulsive events
of magnetic energy dissipation associated with nanoflares.
The highly intermittent nature of dissipation in MHD
turbulence is revealed in a numerical simulation of coronal
loop subject to random magnetic forcing, with clear indi-
cation of intermittency in both space and time even for
moderate magnetic Reynolds numbers [Georgoulis et al.,
1998]. Boffetta et al. [1999] suggested that the power-law
statistics of the quiet time interval between successive bursts
of solar flares is an indication of an underlying complex
dynamics with long correlation times; a chaotic shell model
of intermittent MHD turbulence was able to reproduce the
observed power-law statistics. Evidence of intermittency in
the transition region was recorded in a quiet Sun by SOHO/
SUMER [Patourakos and Vial, 2002]; these findings render
support for an impulsively heated transition region and
corona via intermittent MHD turbulence. Resonant heating
of ions in the solar corona by large-amplitude Alfvén waves
and electrostatic waves propagating across the magnetic
field was studied byWhite et al. [2002], which demonstrates
the existence of the resonances leading to chaos and
significant heating. Markovskii and Hollweg [2004] devel-
oped a model of intermittent heating of solar corona by ion
cyclotron waves produced by small-scale reconnection
events related to microflares; their calculations suggest that
the overall heating is sufficiently efficient to account for the
acceleration of the fast solar wind in solar coronal holes. A
model of coronal nanoflares was formulated by a shell
technique based on a set of reduced MHD equations [Veltri
et al. [2005]; numerical simulations show that the injected
energy is efficiently stored in the coronal loop where a
significant level of magnetic and velocity fluctuations is
obtained, leading to nonlinear interactions that give rise to
an energy cascade toward small scales where energy is
intermittently dissipated.
[5] The first observation of nonlinear evolution from

order to chaos of solar wind was reported by Burlaga
[1988], who identified the formation of ordered large
structures from irregular small structures as well as the
period-doubling of the period of the corotating interaction
regions in the outer heliosphere. Burlaga [1991] was also
the first to report the evidence of intermittent turbulence in
the solar wind, by demonstrating the existence of multi-
fractal structure in the velocity fluctuations associated with
recurrent streams at 1 AU and near 6 AU. Marsch and Liu
[1993] provided evidence of the intermittent nature of the
fluctuations of the flow velocity and Alfvén velocity in the
inner heliosphere between 0.3 and 1.0 AU. Marsch and Tu
[1994] determined the non-Gaussian nature of the probabil-
ity distribution functions of the interplanetary intermittent
turbulence, by showing that at small scales the statistical
properties are dominated by large-amplitude fluctuations.
Chian et al. [1998] and Borotto et al. [2001] demonstrated
that the interplanetary Alfvén intermittency can be driven by
chaos. Matthaeus et al. [1999] formulated a phenomeno-

logical theory for the radial evolution of MHD and Alfvénic
turbulence in the solar wind which includes a simple closure
for local anisotropy, spatial transport, and driving by large-
scale shear and pickup ions. Sorriso-Valvo et al. [1999]
showed that the non-Gaussian behavior of the probability
distribution functions of solar wind velocity and magnetic
field fluctuations at small scales are represented by a
convolution of Gaussians whose variances are distributed
according to a log-normal distribution; their results confirm
the findings of Marsch and Tu [1994] that in both fast and
slow solar winds, the magnetic field is more intermittent
than the bulk speed. Bruno et al. [2001] applied the wavelet
technique to determine the local intermittency measure in
the solar wind data and identify the intermittent structures
contributing to a single event of solar wind intermittency;
their results show that this event is located at the border
between two adjacent interplanetary regions characterized
by different total pressure and bulk velocity, possibly the
boundary between two adjacent flux tubes; these observa-
tions render support for the idea that the solar wind
fluctuations are a superposition of propagating Alfvén
waves and flux tubes of convected-pressure-balance struc-
tures originated at the base of the solar atmosphere.
Gulamali and Cargill [2001] discussed the character of
MHD turbulence in the well-developed corotating interac-
tion regions at midlatitudes of the heliosphere based on the
Ulysses data; their magnetic field power spectra show
evidence for the turbulent mixing of plasma far from the
Sun and the possible signs of instabilities arising at stream
interfaces; there is a clear variation of magnetic field power
and Alfvenicity with the structure of the corotating interac-
tion regions; in addition, they found that the solar cycle
variation has a clear effect upon the turbulent character of
the solar wind thus provides further evidence for the solar
origin of the majority of interplanetary turbulence. Padhye
et al. [2001] used the Ulysses observations to examine the
probability distribution functions of the fluctuations of the
fast and slow solar wind magnetic field at different phases
in the solar cycle and determine the degrees of non-
Gaussianity of the interplanetary intermittent turbulence
by moment comparisons (kurtosis). Pagel and Balogh
[2003] studied the radial dependence of intermittency in
the fast polar solar wind magnetic field using the Ulysses
data. Bruno et al. [2004] compared observations of inter-
planetary fluctuations with a Levy statistics and showed that
the observations can be reasonably fitted by a truncated-
Levy-flight distribution; they proposed a two-component
model for the solar wind intermittent turbulence, one
represented by coherent, nonpropagating structures con-
vected by the solar wind and the other composed of
propagating, quasi-stochastic fluctuations, namely Alfvén
waves. Burlaga and Viñas [2004] described the multiscale
structure of fluctuations in the solar wind speed and
magnetic field strength at 1 AU by a generalized Tsallis
probability distribution function from a nonadditive entropy
function in the context of nonextensive statistical mechan-
ics; many types of physical structures were identified,
including intermittent turbulence at small scales. Bruno
and Carbone [2005] and Bruno et al. [2005] reviewed
theories and observations of MHD intermittent turbulence
in the solar wind. Hnat et al. [2005] used extended self-
similarity to reveal scaling in the structure functions of
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density fluctuations in the solar wind. Leubner and Vörös
[2005] adopted a nonextensive entropy approach to analyze
the scale dependence of the solar wind intermittency and
showed that the observed Wind and ACE probability
distribution functions are accurately reproduced by the
theoretical bi-kappa distributions for different scales.
[6] The auroral electroject (AE) index is commonly used

as an indicator of the global magnetospheric activity, with a
viewpoint that AE can sample the state space of the
magnetospheric system. Price and Prichard [1993] consid-
ered the nonlinear response of the magnetosphere to the
solar wind forcing, as given by the AE index, for 30 October
1978 when the interplanetary magnetic field has a nearly
constant southward value of Bz = �10 nT and the auroral
activity was quite high; they found that there is some
evidence for deterministic nonlinear response of the mag-
netosphere to solar wind forcing. Pu and Wang [1997]
studied the structure instability and nonlinear evolution of
magnetic islands produced by magnetic reconnection at the
magnetopause and derived the critical conditions for occur-
rence of bifurcation and chaos. Consolini and De Michelis
[1998] calculated the probability distribution functions of
the AE-index fluctuations at different timescales from
1 January 1978 to 31 December 1985, which indicates that
the distributions are always non-Gaussian for the timescales
in the range 1–120 min for both quiet and disturbed
geomagnetic periods, which indicates that the auroral elec-
trojet is intermittent for both periods. Angelopoulos et al.
[1999] obtained evidence of intermittent turbulence in the
Earth’s plasma sheet using the Geotail and Wind data,
which permits cross-scale coupling of localized jets (bursty
bulk flows) into a global perturbation (substorms) with
demonstrated characteristics of self-organized criticality;
according to their observations the magnetotail is in a
bimodal state: nearly stagnant, except when driven turbulent
by bursty fast flows; they pointed out that processes other
than self-organized criticality, such as chaos, can also be
associated with intermittency. Kovács et al. [2001] per-
formed discrete orthonormal wavelet transform and filtering
in the midlatitude geomagnetic time series in order to
identify the intermittent events characterized by non-Gauss-
ian probability distribution functions; they computed the
empirical probability distributions of the laminar time
between the energy bursts of intermittent events and argued
that near-SOC or chaotic turbulence model can explain the
observed features. Choe et al. [2002] found characteristics
of self-similarity and self-organized criticality of the AL
time series, and a good correlation between AL and the
solar cycle. Consolini and De Michelis [2002] studied the
fractal statistics of the AE-index burst waiting times be-
tween quiet and active periods of auroral activities, which
supports the hypothesis that the Earth’s magnetotail might
operate as a complex system near a marginally stable state
and plays a relevant role in the impulsive energy relaxation.
Chang et al. [2003] described a complexity theory for
forced and/or self-organized criticality for space plasmas
far from equilibrium and showed that the sporadic and
localized interactions of magnetic coherent structures are
the origin of intermittent turbulence and complexity in
space plasmas. Hnat et al. [2003] studied scaling in data
sets of the geomagnetic indices (AE, AU, and AL) and the e
parameter which is a measure of the solar wind driver as

seen by the Wind spacecraft. Stepanova et al. [2003] found
that the probability distribution functions of the Polar Cap
index display a strong non-Gaussian shape, indicating
intermittency of magnetospheric dynamics. Chang et al.
[2004] used the probability distribution function and local
intermittency measure to characterize the sporadic, local-
ized, and scale-dependent nature of intermittent turbulence
using the results of 2-D MHD simulations. Vörös et al.
[2004] investigated small-scale intermittent magnetic turbu-
lence observed by Cluster in the plasma sheet using a
wavelet estimator; they showed that during nonbursty bulk
flow associated periods the energy transfer to small scales is
absent, whereas cross-scale energy transfer is seen during
bursty bulk flow associated periods. Zelenyi and Milovanov
[2004] reviewed the modern theory of turbulence in com-
plex dynamical systems displaying self-organized critical
behavior and power-law energy spectra and discussed its
application to current sheet, substorm, and large-scale
magnetic fields in solar photosphere and interplanetary
space. Consolini and De Michelis [2005] applied the
technique of local intermittency measure to obtain evidence
of the two-component model of auroral electroject proposed
by Kamide and Kokubun [1996] which consists of contri-
butions from the directly driven convection enhancement
and the impulsively unloading processes in the solar wind-
magnetosphere interactions; by separating the two compo-
nents of the AE index into a nonintermittent AE component
related to the directly driven contribution and an intermittent
AE component due to the unloading contribution, for the
30 October 1978 event previously considered by Price and
Prichard [1993], they showed that the intermittent auroral
events appear as coherent structures localized in time with
timescales shorter than about 100 min, in agreement with
the possible origin of unloading phenomena suggested by
Kamide and Kokubun [1996]. Weygand et al. [2005]
obtained evidence of intermittent turbulence in plasma sheet
by studying the scaling behavior of the probability distri-
bution functions and the multifractal structure function,
based on the magnetic field data of Cluster II.
[7] The above discussions demonstrate clearly that the

study of intermittency and chaos is essential for our under-
standing of the complex physical processes underlying the
Sun-Earth relation. The aim of this paper is to apply the
low-dimensional chaotic approach to probe the intermittent
nature of the solar-terrestrial environment, based on the
numerical simulation of a nonlinear model of stationary
solutions (i.e., solutions are stationary in time) of Alfvén
waves. Following the works of Chian et al. [1998] and
Borotto et al. [2001], two types of Alfvén intermittencies
are studied: type-I intermittency and crisis-induced inter-
mittency. In contrast to the papers by Chian et al. [1998]
and Borotto et al. [2001] wherein the dynamical role of the
driver amplitude on nonlinear Alfvén waves was studied, in
this paper we investigate the dynamical role of the plasma
dissipation on nonlinear Alfvén waves. In particular, we
show that unstable periodic orbits and chaotic saddles are
the fundamental unstable structures responsible for inter-
mittency/chaos in a nonlinear model of Alfvén waves. Our
model indicates that nonlinear Alfvénic fluctuations might
evolve towards phases of strong intermittency alternating
with phases of laminar behavior. In addition, we show that
the average duration of the laminar phases for both types of
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Alfvén intermittency follows a theoretically predicted scal-
ing, which can be relevant for space weather forecasting.
The role of interplanetary Alfvén intermittency in the
geomagnetic events driven by the solar wind, known as
the High-Intensity Long-Duration Continuous Auroral Ac-
tivity (HILDCAA), will be discussed.

2. Nonlinear Model of Alfvén Waves

[8] Nonlinear spatiotemporal evolution of Alfvén waves
can be modeled by the derivative nonlinear Schrödinger
equation (DNLS) [Hada et al., 1990; Chian et al., 1998]

@tbþ a@x jbj2b
� �

� i mþ ihð Þ@2
x b ¼ S b; x; tð Þ; ð1Þ

where the wave is propagating along an ambient magnetic
field B0 in the x-direction, b = by + ibz is the complex
transverse wave magnetic field normalized to the constant
ambient magnetic field, h is the dissipative scale length, time
t is normalized to the inverse of the ion cyclotron frequency
wci = eB0/mi, space x is normalized to cA/wci, cA= B0/(m0r0)

1/2

is the Alfvén velocity, a = 1/[4(1 � b)], b = cS
2/cA

2, cS = (gP0/
r0)

1/2 is the acoustic velocity, and m is the dispersive
parameter. The external forcing S(b, x,t) = Aexp(ikf) is a
monochromatic left-hand circularly polarized wave with a
wave phase f = x � Vt, where V is a constant wave velocity,
A is the driver amplitude, and k is the driver wave number.
[9] In this paper we investigate the special solutions of

equation (1) which are stationary in time with b = b(f),
whose first integral reduces to a coupled set of three ordinary
differencial equations describing the transverse wave mag-
netic fields and the wave phase of nonlinear Alfvén waves

_by � n _bz ¼
@H

@bz
þ a cos q; ð2Þ

_bz þ n _by ¼ � @H

@by
þ a sin q; ð3Þ

_q ¼ W; ð4Þ

where H = (b2 � 1)2/4 � (l/2)(b � ŷ)2, the overdot denotes
derivative with respect to the wave phase t = ab0

2f/m
(henceforth called the time variable), the normalized
dissipation parameter n = h/m, b ! b/b0 (where b0 is an
integration constant), b = (by, bz), q = Wf, W = mk/ab0

2, a =
A/ab0

2k, l = �1 + V/ab0
2. We assume b < 1, hence a > 0.

[10] The set of equations (2)–(4) represent a forced
oscillator with two control parameters, the driver amplitude
a and the dissipative coefficient n. In this paper, we will
study the dynamical properties of Alfvén waves by varying
n. This parameter is defined as a phenomenological damp-
ing parameter denoting the damping of Alfvén waves due to
wave-particle interactions such as cyclotron damping or
Landau damping [Ghosh and Papadopoulos, 1987].

3. Alfvén Chaos

[11] A low-dimensional model of Alfvén chaos was
formulated by Hada et al. [1990] based on the numerical

solutions of equations (2)–(4); for the nondissipative (Ham-
iltonian) case, the solutions near the phase-space separa-
trices (soliton) in the Poincaré map become chaotic as the
driver amplitude increases; for the dissipative case, the
system displays routes to chaos via period-doubling bifur-
cation and tangent bifurcation. A series of works were
published following the pioneer model of Hada et al.
[1990]. Buti [1992] showed that nonlinear Alfvén waves
in a multispecies plasma can be chaotic if the driver
amplitude exceeds a certain threshold; heavier ions, such
as helium in the solar wind and oxygen in comets, tend to
reduce chaos. Buti [1997] demonstrated that even a small
fraction of charged dust grains can suppress chaos in Alfvén
systems which are chaotic in the absence of dust particles.
Chian et al. [1998] and Borotto et al. [2001] identified two
types of Alfvén intermittency driven by chaos. Chian et al.
[2002a] reported a transition mechanism to Alfvén chaos
via a boundary crisis whereby a chaotic attractor suddenly
appears/disappears; the same period-9 unstable periodic
orbit is responsible for mediating two successive boundary
crises. Borotto et al. [2004a] studied an Alfvén interior
crisis associated with an abrupt increase/decrease of the size
of the chaotic attractor. Borotto et al. [2004b] demonstrated
that in the period-3 periodic window studied by Chian et al.
[1998] and Borotto et al. [2001] the same period-9 unstable
periodic orbit is responsible for mediating a boundary crisis
followed by an interior crisis. Rempel and Chian [2004] and
Rempel et al. [2004a] examined the role played by non-
attracting chaotic sets known as chaotic saddles, responsible
for chaotic transients in Alfvén chaos, and showed that at
the onset of chaos via a saddle-node bifurcation and at a
chaotic transition via an interior crisis the gaps in the
chaotic saddles are filled by coupling unstable periodic
orbits.
[12] A high-dimensional analysis of Alfvén spatiotempo-

ral chaos based on DNLS was conducted by Ghosh and
Papadopoulos [1987], which indicates the transition of
MHD oscillations from a coherent state to turbulence. A
numerical study of acceleration of Alfvén solitons by
Nocera and Buti [1996] based on DNLS shows that under
the action of an external harmonic driver nonlinear wave
interactions develop and evolve to spatiotemporal chaos. De
Oliveira et al. [1997] studied Alfvén spatiotemporal chaos
in a dispersive modulational regime by solving a set of
coupled wave equations. Buti [1999] discussed spatiotem-
poral chaos in nonlinear Alfvén waves described by DNLS.
Buti et al. [1999] studied the spatiotemporal evolution of
nonlinear Alfvén waves in streaming inhomogeneous plas-
mas governed by a modified DNLS. Krishan and Nocera
[2003] used DNLS to study the relaxation of an Alfvén
turbulence evolved from four-wave interactions and inverse
energy cascade to a state with soliton type structures. A
series of papers have treated the high-dimensional wave
phase dynamics of nonlinear Alfvén waves based on the
Kuramoto-Sivashinsky equation [Chian et al., 2002a;
Rempel and Chian, 2003; Rempel et al., 2004b; Rempel et
al., 2004c; Rempel and Chian, 2005].
[13] In this paper, we study the roles played by unstable

periodic orbits and chaotic saddles in Alfvén type-I inter-
mittency and Alfvén crisis-induced intermittency, based on
the low-dimensional model of Alfvén chaos described by
equations (2), (3)–(4). A bifurcation diagram, which pro-
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vides an overview of the system dynamics and its sensitive
dependence on small variations in a system parameter, can
be constructed from the numerical solutions of equations
(2), (3)–(4) by varying the dissipative parameter n while
keeping other system parameters fixed (a = 0.3, W = �1,
l = 1/4, m = 1/2). We define a Poincaré plane as

P : by tð Þ; bz tð Þ
� �

! by tþ Tð Þ; bz tþ Tð Þ
� �

; ð5Þ

where T = 2p/W is the driver period. Figure 1a displays a
global view of the bifurcation diagram of nonlinear Alfvén
waves. For a given n, Figure 1a plots the asymptotic values
of the Poincaré points of bz, where the initial transient is
omitted.
[14] The phase space of equations (2)–(4) has three

dimensions, therefore the system has three Lyapunov expo-
nents, one of which is always zero (in the direction tangent
to flow). For the remaining two exponents, the maximum
Lyapunov exponent is less than zero for a stable periodic
orbit, zero for a quasiperiodic orbit, and greater than zero
for a chaotic orbit. Figure 1b shows the maximum Lyapu-

nov exponent as a function of n, for the bifurcation diagram
of Figure 1a, calculated by the Wolf algorithm [Wolf et al.,
1985]. It follows from Figure 1 that the global dynamical
behavior of nonlinear Alfvén waves contains an admixture
of chaotic and ordered regimes, wherein there are periodic
windows within a chaotic region and chaotic regions within
a periodic window.
[15] An enlargement of a small region of the bifurcation

diagram indicated by the arrow in Figure 1a is given in
Figure 2a, which displays both attractors (dark) and chaotic
saddles (gray) for a period-2 periodic window. This periodic
window begins with a saddle-node bifurcation (SNB) at
nSNB = 0.07738, where a pair of period-2 stable (solid line)
and unstable (dashed line) periodic orbits are created. The
unstable periodic orbit is found by the Newton method
[Curry, 1979]. The period-2 stable periodic orbit undergoes
a cascade of period-doubling bifurcations as n decreases and
turns eventually into a banded chaotic attractor with two
bands. This periodic window ends with an interior crisis
(IC) at nIC = 0.06212, when the banded chaotic attractor
collides head-on with the period-2 mediating unstable
periodic orbit (M) created by the saddle-node bifurcation
SNB, which leads to an attractor-widening [Borotto et al.,
2004a]. To plot the chaotic saddle, for each value of n, we
plot a straddle trajectory close to the chaotic saddle using
the PIM triple algorithm [Nusse and Yorke, 1989; Rempel
and Chian, 2004; Rempel et al., 2004a]. The gray region
inside the periodic window in Figure 2a, denotes the
surrounding chaotic saddle (SCS) which acts as the transient
preceding the convergence of the solutions to a periodic or a
chaotic attractor; the surrounding chaotic saddle extends to
the chaotic regions outside the periodic window, to the left
of IC and to the right of SNB, where it becomes a subset of
the chaotic attractor. After crisis, the banded chaotic attrac-
tor is converted into a banded chaotic saddle, as shown in
Figure 2b. In Figure 2c, we plot the variation of the
maximum Lyapunov exponent of the attracting set as a
function of n. Note that the value of the maximum Lyapu-
nov exponent jumps suddenly at IC and SNB, implying an
abrupt increase in the degree of chaoticity in nonlinear
Alfvén system.
[16] Unstable periodic orbits are the skeleton of a chaotic

attractor because chaotic trajectories are closures of the
infinite set of unstable periodic orbits [Ott, 1993]. In
contrast to a periodic attractor thereby all trajectories
initiated from any point in the state space are attracted to
a stable periodic orbit, in a chaotic attractor all periodic
orbits are unstable. Chaotic sets are not necessarily attract-
ing sets. A set of unstable periodic orbits can be chaotic and
nonattracting so that the orbits in the neighborhood of this
set are eventually repelled from it; nonetheless, this set can
contain a chaotic orbit with at least one positive Lyapunov
exponent [Nusse and Yorke, 1989]. If the chaotic orbit has
also one negative Lyapunov exponent the nonattracting set
is known as chaotic saddle. Both chaotic saddles and
chaotic attractors are composed of unstable periodic orbits.
The unstable periodic orbits in a chaotic system have
specific functions. For example, we will study the period-
2 unstable periodic orbit (M) created at SNB, which is
responsible for mediating the onset of an interior crisis at IC
which leads to Alfvén crisis-induced intermittency, as well
as the laminar phases of Alfvén type-I intermittency. In

Figure 1. Bifurcation diagram and maximum Lyapunov
exponent: global view. (a) Bifurcation diagram, bz as a
function of n, (b) maximum Lyapunov exponent lmax as a
function of n. Positive lmax indicates chaos and negative
lmax indicates order. The arrow indicates a period-2
periodic window. a = 0.3, W = �1, l = 1/4, m = 1/2.
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addition, we identify a set of coupling unstable periodic
orbits (C), located in the gap regions of chaotic saddles
embedded in a chaotic attractor, which are responsible for
coupling the chaotic saddles resulting in Alfvén crisis-
induced intermittency. Examples of mediating and coupling

unstable periodic orbits are shown in Figure 3a and Figures
3b–3c, respectively, for n = 0.0616.

4. Alfvén Type-I Intermittency

[17] As mentioned earlier, a local bifurcation known as
saddle-node bifurcation takes place at nSNB = 0. 07738 in
Figure 2a, where a pair of period-2 stable and unstable
periodic orbits are created. Figure 4a shows a time series of

Figure 3. Unstable periodic orbits in the state space and
the Poincaré plane for n = 0.0616. (a) A mediating unstable
periodic orbit of period-2 generated via a saddle-node
bifurcation at n = 0.07738, (b) a coupling unstable periodic
orbit of period-11 generated via explosion at n = 0.0616,
(c) a coupling unstable periodic orbit of period-13 generated
via explosion at n = 0.0621. Cross denotes the Poincaré
points of the unstable periodic orbits.

Figure 2. Bifurcation diagram and maximum Lyapunov
exponent: period-2 periodic window. (a) Bifurcation
diagram, bz as a function of n, superimposed by the
surrounding chaotic saddle (gray); (b) same as Figure 2a,
showing the conversion of the pre-crisis banded chaotic
attractor (black) into the post-crisis banded chaotic saddle
(gray); (c) maximum Lyapunov exponent, lmax as a
function of n. IC denotes the interior crisis, SNB denotes
the saddle-node bifurcation, SCS denotes the surrounding
chaotic saddle, BCS denotes the banded chaotic saddle.
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period-2, periodic nonlinear Alfvén wave trains for n =
0.07738; the same time series as a function of the driver
cycles is plotted in Figure 4b; the corresponding power
spectrum as a function of wave frequency is given in
Figure 4c, which shows discrete peaks typical of a periodic
signal. To the right of nSNB, the system is chaotic, Figure 4d
shows a chaotic time series of Alfvén type-I intermittency
for n = 0.07739; the same time series as a function of the
driver cycles is given in Figure 4e; the corresponding power
spectrum is shown in Figure 4f. The time series of the
Alfvén type-I intermittency in Figures 4d–4e demonstrate
that the amplitude fluctuations of bz involves episodic
regime switching between periods of laminar fluctuations
and periods of bursting fluctuations. In contrast to the
discrete power spectrum of the periodic regime seen in
Figure 4c, the power spectrum of the chaotic regime before
the saddle-node bifurcation is broadband, with a power-law
behavior at high frequencies. Note that a typical power
density spectrum of interplanetary magnetic field fluctua-
tions show three ranges of frequency with clear power laws:
the low-frequency range that belongs to the integral scales,
the middle-frequency range that resembles the inertial range
predicted by Kolmogorov wherein intermittency is strongly
active, and the high-frequency range that represents the
dissipation scales [Bruno et al., 2005].
[18] As the Alfvén system undergoes a transition from

order to chaos via a saddle-node bifurcation, the surround-
ing chaotic saddle is converted into a chaotic attractor, as

shown in Figure 2a. Figure 5a shows the chaotic attractor
(CA) in the Poincaré plane for n = 0.07739. The surround-
ing chaotic saddle embedded in the chaotic attractor of
Figure 5a is shown in Figure 5b, where we also plotted the
locus of the fixed points (cross) of the period-2 unstable
periodic orbit (M) just before the transition to chaos, at
nSNB = 0.07738. Unlike M, all the other unstable periodic
orbits contained in the surrounding chaotic saddle right after
the saddle-node bifurcation (Figure 2a) continue to exist in
the chaotic region beyond the saddle-node bifurcation (n >
nSNB). Note from Figure 5b that there are gaps in the
surrounding chaotic saddle. The conversion from a chaotic
saddle to a chaotic attractor, to the right of nSNB, is due to
the creation of new unstable periodic orbits in the gaps
regions via the phenomenon of explosion [Robert et al.,
2000; Szábo et al., 2000]. An enlargement of the two
rectangular regions of Figure 5b is given in Figures 5c
and 5d, respectively. Although the period-2 unstable peri-
odic orbit (M) appears only after the saddle-node bifurca-
tion, the system keeps the memory of this orbit before the
saddle-node bifurcation. When an unstable periodic orbit,
from either the surrounding chaotic saddle or the gap
regions in Figure 5b, approaches the vicinities of M, it is
decelerated and spends more time in these regions, indicated
by Figures 5c–5d. This is due to the synchronization of the
unstable periodic orbits of the chaotic attractor with M,
which gives rise to the laminar periods of the Alfvén type-I
intermittency seen in Figures 4d–4e. When a chaotic orbit

Figure 4. Alfvén type-I intermittency. (a) and (d): Time series bz as a function of t for n = 0.07738 and
n = 0.07739, respectively; (b) and (e): the same time series as Figures 4a and 4d of bz as a function of the
driver cycles; (c) and (f): the power spectrum of Figures 4a and 4d, respectively.
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moves away from the regions shown in Figures 5c–5d, the
orbit becomes desynchronized with respect to M and moves
freely along the surrounding chaotic saddle, which then
gives rise to the periods of bursting fluctuations seen in
Figures 4d–4e.
[19] The average duration of the laminar (quiescent)

periods in the time series of the Alfvén type-I intermittency
seen in Figures 4d and 4e, known as the characteristic
intermittency time, depends on the deviation of the control
parameter n from nSNB. Close to nSNB the average time a
chaotic orbit spends in the vicinity of the mediating unstable
periodic orbit M is very long, and decreases as n moves
away from nSNB. The characteristic intermittency time t can
be determined by taking the average over a long time series
of the time intervals of regime switching from laminar to
bursting periods. Figure 6 shows a plot of log10 t as a
function of log10 (n � nSNB), where the solid line with a
slope g = �0.6 is a linear fit of the values of the
characteristic intermittency time computed from the time
series (squares). Figure 6 reveals that the characteristic
intermittency time t decreases with the distance from the
critical system parameter nSNB, following a power-law
decay, t � (n � nSNB)

g.

5. Alfvén Crisis-Induced Intermittency

[20] A global bifurcation known as interior crisis (IC)
takes place at n = 0.06212, as seen in Figure 2a, which leads
to a widening of the chaotic attractor. The occurrence of
interior crisis is due to the collision of the banded chaotic
attractor with the period-2 mediating unstable periodic orbit
(M) created via saddle-node bifurcation at nSNB. Figure 7a

shows the surrounding chaotic saddle SCS (gray), and
the banded chaotic attractor CA (black) localized in two
separate regions of the phase space, for n = 0.06212.
Figures 7b–7c are enlargements of the two rectangular
regions in Figure 7a, respectively, showing the Poincaré
points (cross) and its stable manifold SM (light line). The
stable manifold of the mediating unstable periodic orbit
forms the boundary between the banded and surrounding
regions. Figures 7b and 7c reveal that at the onset of crisis

Figure 5. Chaotic attractor and chaotic saddle in Alfvén type-I intermittency for n = 0.07739.
(a) Poincaré map of the chaotic attractor (CA); (b) the surrounding chaotic saddle (SCS, gray) embedded
in the chaotic attractor of Figure 5a; (c) and (d) enlargements of the two rectangular regions of (b). Cross
denotes the locus of the Poincaré point of the mediating unstable periodic orbit of period-2 created via a
saddle-node bifurcation at nSNB = 0.07738.

Figure 6. Characteristic intermittency time for Alfvén
type-I intermittency. log10 t as a function of log10 (n �
nSNB).
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the chaotic attractor CA collides head on with the mediating
unstable periodic orbit and its stable manifold, as well as the
surrounding chaotic saddle.
[21] An example of precrisis weakly chaotic time series is

given in Figures 8a–8b, and its corresponding power
spectrum is given in Figure 8c, for n = 0.06212. Before
crisis, Figures 8a and 8b show that the temporal fluctuations
of Alfvén wave amplitude are apparently laminar. The
interior crisis leads to a stronger chaos for n less than nIC,
which induces an intermittent time series exemplified in
Figures 8d–8e for n = 0.0616; the corresponding power

spectrum is given in Figure 8f. The Alfvén crisis-induced
intermittency in Figures 8a–8b displays random switching
between laminar periods and bursting periods of amplitude
fluctuations. A comparison of precrisis and postcrisis power
spectra of Figures 8c and 8f shows that the discrete spikes
are less evident in Figure 8f than Figure 8c, which implies
that nonlinear interactions are stronger after crisis.
[22] As the consequence of the chaotic attractor-chaotic

saddle collision, after the onset of interior crisis the precrisis
banded chaotic attractor turns into a postcrisis strong chaotic
attractor, as shown by Figure 9a for n = 0.0616. Embedded
in the strong chaotic attractor are two chaotic saddles
(surrounding and banded) and coupling unstable periodic
orbits created by explosion after the onset of crisis.
Figures 9b shows the numerically found surrounding cha-
otic saddle (SCS, gray), banded chaotic saddle (BCS,
black), and the fixed points of the period-2 mediating
unstable periodic orbit (cross). Enlargements of the two
rectangular regions of Figure 9b are plotted in Figures 9c
and 9d, respectively, where we also show the mediating
orbit (cross) and its stable manifold (SM, thin line), which
divides the surrounding and banded regions.
[23] Note from Figures 9b to 9d that there are gaps in the

surrounding and banded chaotic saddles. These gaps are
densely filled by uncountably many coupling unstable
periodic orbits (C), created by explosion after the onset of
interior crisis [Robert et al., 2000; Szábo et al., 2000],
which have components in both surrounding and banded
regions and are responsible for the coupling between the
two regions. We find numerically two examples of the
coupling unstable periodic orbits. Figure 10a shows a
coupling unstable periodic orbit of period-11 at n =
0.0616, which is created via explosion at this value of n.
Enlargements of the two rectangular regions of Figure 10a
are given at Figures 10b and 10c, respectively. Figure 11a
shows a coupling unstable periodic orbit of period-13 at n =
0.0616, which is created via explosion at n = 0.0621.
Enlargements of the two rectangular regions of Figure 11a
are given in Figures 11b and 11c, respectively. Figures 10
and 11 show that the fixed points of the coupling unstable
periodic orbits are located in the gap regions of both
surrounding and banded chaotic saddles. The state-
space trajectories of the two coupling unstable periodic
orbits of Figures 10 and 11 are given in Figures 3b and 3c,
respectively.
[24] The average duration of the laminar (quiescent)

periods in the time series of the Alfvén crisis-induced
intermittency seen in Figures 8d and 8e, i.e., the character-
istic intermittency time, depends on the deviation of the
control parameter n from nIC and decreases as n moves
away from nIC. The characteristic intermittency time t can
be determined by taking the average over a long time series
of the time intervals of regime switching from laminar to
bursting periods. Figure 12 shows a plot of log10 t as a
function of log10(nIC � n), where the solid line with a slope
g = �0.78 is a linear fit of the values of the characteristic
intermittency time computed from the time series (squares).
Figure 12 reveals that the characteristic intermittency time t
decreases with the distance from the critical system param-
eter nIC, following a power-law decay, t � (nIC � n)g. A
comparison of Figures 6 and 12 indicates that the decrease
of t with the deviation from the bifurcation point (nIC/nSNB)

Figure 7. Alfvén interior crisis at n = 0.06212. (a)
Poincaré map of the banded chaotic attractor (CA, black)
and the surrounding chaotic saddle (SCS, gray); (b) and (c):
enlargements of the two rectangular regions of (a). Cross
denotes the Poincaré points of the mediating unstable
periodic orbit of period-2 and SM (thin line) denotes its
stable manifold.
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in the Alfvén crisis-induced intermittency is faster than the
Alfvén type-I intermittency.

6. Discussion

[25] Large-amplitude interplanetary Alfvén waves can
cause intense auroral activities known as HILDCAAs, as
a result of the magnetic reconnection between the south-
ward magnetic field components (Bz) of the interplanetary
Alfvén waves and the magnetopause magnetic fields, which
is responsible for the transfer of solar wind energy to the
magnetosphere; during the HILDCAA intervals, there is a
close correlation between the minima of Bz and the maxima
of the auroral electroject (AE) index [Tsurutani and
Gonzalez, 1987]. In contrast to solar maximum during
which the dominant interplanetary phenomena causing
intense geomagnetic storms are the interplanetary manifes-
tation of coronal mass ejections (ICME), during solar
minimum the interplanetary Alfvén waves associated with
the trailing edge of corotating high-speed streams, are the
dominant cause of intermittent magnetic field reconnections
in the magnetosphere, intermittent auroral activities, and
intermittent injection of plasma sheet energy into the outer
regions of the ring current, which are signatures of the
HILDCAA events [Gonzalez et al., 1999]. Tsurutani et al.
[2004] noted that shorter HILDCAA intervals may occur
following a geomagnetic storm related to ICME; in partic-

ular, they pointed out that although substorms were detected
during the HILDCAA intervals, there is little or no rela-
tionship between substorm occurrences and AE increases,
thus the mechanisms that cause HILDCAAs and substorms
may be different. Diego et al. [2005] presented evidence of
the AE fluctuations directly driven by interplanetary Alfvén
waves by examining the AE index variability during 12
passings of corotating fast solar wind streams at the Earth in
the ascending phase of solar cycle 23; they applied the
Discrete Fourier Transform technique to demonstrate that
both the interplanetary Alfvenic magnetic field fluctuations
measured by the ACE spacecraft and the AE index have
periodicities in the 1 to 10 hour range; in particular, their
analysis shows that in all events the magnetic field fluctua-
tions of interplanetary Alfvén waves and the AE index are
well correlated. Tsurutani et al. [2005] showed that nonlin-
ear Alfvén waves, discontinuities, proton perpendicular
acceleration, and magnetic holes/decreases in interplanetary
space are interrelated; moreover, interplanetary Alfvén
waves are both dispersive and dissipative, indicating
that they may be intermediate shocks [Wu, 2003]; the
turbulence created by the Alfvén wave dissipation is
quite complex, containing both propagating (waves) and
nonpropagating (mirror mode structures and magnetic
decreases) byproducts.
[26] The derivative nonlinear Schrödinger equation (1)

which is the basis of our present study contains the effects

Figure 8. Alfvén crisis-induced intermittency. (a) and (d): Time series bz as a function of t for n =
0.06212 and n = 0.0616, respectively; (b) and (e): the same time series as Figures 8a and 8d of bz as a
function of the driver cycles; (c) and (f): the power spectrum of Figures 8a and 8d, respectively.
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of dispersion (m) and dissipation (h), observed in interplan-
etary Alfvén waves by Tsurutani et al. [2005]. Hence DNLS
is a good model for studying the nonlinear evolution of
large-amplitude Alfvén waves in the solar wind. The present
paper confirmed the previous analysis of Chian et al. [1998]
and Borotto et al. [2001] that DNLS provides important
insights for understanding Alfvén intermittency driven by
chaos, by showing how intermittent behaviors such as
Alfvén type-I intermittency and Alfvén crisis-induced
intermittency can arise in plasmas. As pointed out in
section 1, a number of papers have characterized interplan-
etary Alfvén intermittency using the statistical approach
[Marsch and Liu, 1993; Marsch and Tu, 1994; Sorriso-
Valvo et al., 1999; Bruno et al., 2001, 2004]. The dynamical
systems approach adopted in this paper complements the
statistical description of interplanetary Alfvén intermittency.
In particular, we succeeded in characterizing the fundamen-
tal features of Alfvén intermittency by decomposing an
Alfvén chaotic attractor into fundamental unstable struc-
tures consisted of chaotic saddles and unstable periodic
orbits. This approach enables us to calculate the average
duration of the quiescent periods in the Alfvén intermittency,
which is related to the dynamical properties of chaotic
saddles embedded in the Alfvén chaotic attractor [Rempel
and Chian, 2005]. Since interplanetary Alfvén waves may
be the solar-wind origin of intense geomagnetic activities
such as HILDCAAs and given the fact that interplanetary

Alfvén waves have been proven to be intermittent by nature,
the method introduced in this paper which allows us to
predict the average duration of the quiescent periods of
interplanetary Alfvén intermittency via numerical simula-
tions can improve the prediction of the abrupt jumps in the
Auroral Electroject index, and consequently improve space
weather forecasting.
[27] In section 1, we briefly mentioned some works on

chaos in solar dynamo, solar corona, and solar wind, putting
emphasis on the intermittency in space plasmas. We now
discuss in detail the observational and theoretical evidence
of the chaotic nature of solar-terrestrial environment. First,
let us focus on the Sun and solar wind. A time series
analysis of observed solar radio pulsations by Kurths and
Herzel [1987] suggests that there must be a low-dimensional
chaotic attractor. Mundt et al. [1991] applied the attractor
reconstruction technique to show that the sunspot cycle is
chaotic and low-dimensional. Kurths and Schwarz [1994]
used the method of symbolic dynamics to reveal some order
in the fragmentation processes observed in solar radio
spikes, and applied the wavelet technique to identify struc-
tural differences of the energization processes causing
impulsive solar microwave bursts which are a typical
transient phenomenon. Macek and Objska [1997] invoked
the Helios data in low-speed solar streams near the Sun to
argue that the inner heliosphere is a low-dimensional
chaotic system. Macek and Radaelli [2001] obtained evi-

Figure 9. Chaotic attractor and chaotic saddle in Alfvén crisis-induced intermittency for n = 0.0616.
(a) Poincaré map of the chaotic attractor (CA); (b) the surrounding chaotic saddle (SCS, gray) and the
banded chaotic saddle (BCS, black) embedded in the chaotic attractor of Figure 9a; (c) and (d):
enlargements of the two rectangular regions of (b). Cross denotes the Poincaré points of the mediating
unstable periodic orbit of period-2 and SM (thin line) denotes its stable manifold.
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dence of chaos in interplanetary Alfvenic fluctuations using
the Helios data. Radaelli and Macek [2001] showed that the
influence of noise in the Helios data can be reduced by a
nonlinear filter, which allows them to determine positive
values of the largest Lyapunov exponent and the Kolmo-
gorov entropy, indicating chaos in the solar wind flow. Lei
and Meng [2004] showed that the sunspot cycle is low-
dimensional and chaotic by applying the Volterra-Wiener-

Korenberg testing method on surrogate data and reconstruc-
tion of attractor.
[28] Next, let us turn to magnetosphere. Baker et al.

[1990] interpreted the evolution from weak to strong
geomagnetic activity in terms of deterministic chaos. A
correlation dimension analysis of the AE index performed
by Vassiliadis et al. [1991] showed that the magnetosphere
behaves as a low-dimensional chaotic system; their calcu-
lation of the Lyapunov exponent of the AL index shows that

Figure 10. Coupling unstable periodic orbit for Alfvén
crisis-induced intermittency at n = 0.0616. (a) A coupling
unstable periodic orbit of period-11 (cross) created via
explosion at n = 0.0616, (b) and (c): enlargements of the
two rectangular regions of Figure 10a. The surrounding
chaotic saddle (SCS) is indicated by gray, the banded
chaotic saddle (BCS) is indicated by black, and SM (thin
line) denotes the stable manifold of the mediating unstable
periodic orbit of period-2.

Figure 11. Coupling unstable periodic orbit for Alfvén
crisis-induced intermittency at n = 0.0616. (a) A coupling
unstable periodic orbit of period-13 created via explosion at
n = 0.0621; (b) and (c): enlargements of the two rectangular
regions of Figure 11a. The surrounding chaotic saddle
(SCS) is indicated by gray, the banded chaotic saddle (BCS)
is indicated by black, and SM (thin line) denotes the
stable manifold of the mediating unstable periodic orbit of
period-2.
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it is greater than zero which indicates the chaotic behavior
of the magnetosphere system. Klimas et al. [1992] devel-
oped a nonlinear dynamic analog model of magnetotail
geomagnetic activity, incorporating both the directly driven
and the unloading components of geomagnetic activity,
which is capable of exhibiting a transition from regular to
chaotic loading and unloading. Pavlos et al. [1992] used the
estimation of the correlation dimension and the largest
Lyapunov exponent to obtain evidence of chaotic attractors
for both magnetospheric and solar wind data. Sharma
[1995] assessed the nonlinear behavior of magnetosphere
and analyzed its low dimensionality and predictability.
Klimas et al. [1996] discussed how to combine a low-
dimensional analogue modeling and data-based phase space
reconstruction to study the nonlinear dynamical solar wind-
magnetosphere coupling. Pavlos et al. [1999] carried out a
nonlinear analysis of the AE index, obtaining support for
chaotic magnetospheric dynamics. Horton et al. [1999,
2001] derived a low-dimensional nonlinear dynamical model
for the solar wind driven magnetosphere-ionosphere, which
exhibits basic properties of a complex dynamical system
such as chaos and can be used to predict substorms. Chian
et al. [2000] and Chian et al. [2002c] showed that chaos can
appear in a three-wave model of magnetospheric radio
emissions involving nonlinear interactions of Langmuir,
whistler, and Alfvén waves in the auroral acceleration
regions, which can generate type-I intermittency and cri-
sis-induced intermittency in auroral plasmas. Athanasiu et
al. [2003] obtained evidence of chaos in the time series of
energetic magnetospheric ions based on the Lyapunov
spectrum, mutual information and prediction models. Kuo
et al. [2004] studied the chaotic behavior of the trajectories
of trapped relativistic electrons interacting with large-
amplitude whistler waves in the magnetosphere; a surface
of section technique was used to examine the system
chaoticity graphically.
[29] Now, let us turn to ionosphere and upper atmosphere.

Huba et al. [1985] showed that the plasma equations
describing the ionospheric turbulence due to interchange

instabilities can be reduced to the same set of equations as the
Lorenz chaotic attractor [Lorenz, 1963]. Bhattacharyya
[1990] presented observational evidence of the chaotic
behavior of ionospheric turbulence from scintillation mea-
surements. Hall et al. [1992] identified a chaotic attractor
with a fractal dimension around 5 in the in situ rocket
measurement of the relative ion density fluctuations of the
mesospheric turbulence from 63 km to 72 km altitude.Kumar
et al. [2004] reported the evidence of low-dimensional chaos
in the dynamical behavior of the time series of the fluctua-
tions of the total electron content (TEC) measured in a high-
latitude station, using the nonlinear tools of recurrence plots,
spatiotemporal entropy, and Lyapunov exponent.
[30] The aforementioned discussions demonstrate that

there is a strong interest in the space physics community
to explore the chaotic nature of solar-terrestrial environ-
ment. Although in this paper we have concentrated on the
analysis of Alfvén intermittency driven by chaos, in view of
the universal mathematical nature of chaotic systems, the
results obtained from our low-dimensional model of Alfvén
system can in fact be applied to other nonlinear processes in
solar-terrestrial physics. The technique developed in this
paper to decompose an Alfvén intermittency in terms of
chaotic saddles and unstable periodic orbits can be readily
applied to other types of space plasma intermittency driven
by chaos.

7. Conclusion

[31] Solar-terrestrial environment is a complex system
which exhibits a wealth of nonlinear behaviors. Recent
advances in theory, computer modeling, and observation
have shed light on the intermittent and chaotic nature of
solar-terrestrial environment, from solar interior to solar
atmosphere, solar wind, magnetosphere, ionosphere, and
atmosphere. Recent advance in dynamical systems research
provides powerful nonlinear tools to characterize the fun-
damental features of intermittency in space plasmas, such as
the interplanetary Alfvén intermittency, which elucidates
clear links between chaos and intermittency, as seen in this
paper.
[32] It is important to point out that the study carried out

in this paper was limited to stationary solutions of the
derivative nonlinear Schrödinger equation, whereby the
dynamical solutions are functions only of the wave phase
variable so the solutions are stationary in time. The low-
dimensional chaos results obtained in this paper improves
our view of the complex nature of space plasmas, e.g.,
facilitating the numerical determination of the coupling
unstable periodic orbits responsible for linking the laminar
and bursty phases of Alfvén crisis-induced intermittency,
which is difficult to achieve in high-dimensional chaotic
systems. It will be highly desirable for future works to
extend the present analysis to spatiotemporal solutions of
the derivative nonlinear Schrödinger equation and model
the dynamical evolution of Alfvén intermittent turbulence
both in space and time.
[33] The mathematical model of interplanetary Alfvén

intermittency based on the chaos theory is relevant to
observation of local dynamics of solar wind as well as
global dynamics of intermittency phenomenon in the
Earth’s magnetosphere shown by geomagnetic indices.

Figure 12. Characteristic intermittency time for Alfvén
crisis-induced intermittency. log10 t as a function of log10
(nIC � n).
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One of the key elements of the space weather forecasting
system is the monitoring of local intermittent fluctuations
of the magnetic field by spacecrafts located at the L1
point of the solar wind. The information of the local
dynamics of solar wind magnetic field is essential to predict
the onset and duration of geomagnetic activities due to solar
wind driving such as the HILDCAA events [Tsurutani and
Gonzalez, 1987; Gonzalez et al., 1999; Tsurutani et al.,
2004; Diego et al., 2005]. Since the southward turning of
solar wind Bz is the cause of magnetic reconnection in the
dayside magnetopause, the prediction of the waiting time
between the bursts of auroral activities relies on our ability
to predict the duration of the laminar period of solar wind
Bz. The chaotic model of interplanetary Alfvén intermitten-
cy is able to identify the laminar periods of solar wind Bz as
shown in Figures 4 and 8 and to provide the scaling laws
for the average duration of the laminar periods of solar
wind Bz as shown in Figures 6 and 12. This information
derived from mathematical modeling can be incorporated
into the data assimilation algorithms for space weather
forecasting. The auroral electrojet (AE) index, an indicator
of the global dynamics of Earth’s magnetosphere, is inter-
mittent [Consolini et al., 1996; Consolini and De Michelis,
1998, 2005]. The analysis of the HILDCAA events indi-
cates a close correlation between Bz of interplanetary
Alfvén waves and the AE index [Tsurutani and Gonzalez,
1987; Diego et al., 2005], which suggests that the inter-
mittency in the AE index is related to the intermittency in
the solar wind magnetic field. Hence the mathematical
model of interplanetary Alfvén intermittency is also rele-
vant for the understanding of the global dynamics of auroral
current systems.
[34] The discovery of chaotic attractor in atmosphere by

Lorenz [1963] has contributed significantly to the improve-
ment of our understanding of the nonlinear dynamics of
atmosphere and ocean, leading to a better weather forecast-
ing. Similarly, we expect that the discovery of chaotic
saddles in space plasmas can improve our understanding
of the nonlinear dynamics of solar-terrestrial environment,
which may lead to a better space weather forecasting.
Although the presence of chaos in nature renders it impos-
sible to make long-term prediction of weather and space
weather, the unstable structures intrinsic in chaotic attractors
and chaotic saddles render it possible to make short-term
prediction of weather and space weather. The extension of
low-dimensional chaos to high-dimensional chaos [Chian et
al., 2002b; Rempel and Chian, 2003; Rempel et al., 2004b;
Rempel et al., 2004c; Rempel and Chian, 2005]) will help
us to monitor and predict the nonlinear spatiotemporal
dynamics and intermittent turbulence in the Earth-ocean-
space environment.
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