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Abstract. Devices like smart phones and GPS navigators are very popular
nowadays. These equipments can save the location of an object with an associ-
ated time, generating a new kind of data, called trajectories of moving objects.
With these data it is possible to discover several interesting patterns, among
which is the interaction between individuals, allowing to infer their relation-
ship. This work addresses the discovery of relationship degree between moving
objects based on their encounters. To calculate the relationship degree we pro-
pose different measures based on frequency, duration, and area of the encoun-
ters. These measures were evaluated in experiments with a running example and
real trajectory data, and show that the method correctly infers relationships.

1. Introduction and Motivation

The price reduction of mobile devices such as GPS and mobile phones, as well as
advances in satellite and wireless sensor technologies, has enabled a significant in-
crease in the use of these mechanisms. These devices allow recording people’s move-
ment. Accordingly, any individual who carries a mobile device, while moving, gener-
ates a trace, in which each time point corresponds to a location in space. This trace
is called trajectory of the moving object. There are several works dealing with such
data, as the one that describes avoidance of trajectories [Alvares et al. 2011], chasing
[de Lucca Siqueira and Bogorny 2011], outliers [de Aquino et al. 2013], flocks, leader-
ship, convergence, and encounter [Laube et al. 2005].

Although there are numerous works on patterns in trajectories, only a few address
the encounter/meeting patterns, and even less works infer friendship relationships from
trajectories or consider encounters for relationship inference. The first work to define
encounter was [Laube et al. 2005], where encounters happen when a set of objects have
points in a specific given radius. [Gudmundsson et al. 2007] defined the encounter pattern
with a minimum number of entities inside a given radius. [Bak et al. 2012] proposed an
algorithm to detect encounters between two trajectories, where all points that are close in
space and time are connected forming a line. The work of Bak focuses on visual analysis
of encounters. The most formal definition of encounter is given by [Dodge et al. 2008],
which defines encounter as a convergence where objects arrive at a place at the same time.

Existing works do only define the concept of encounter, and have neither go deeper
in the encounter pattern analysis nor use them for relationship inference among moving
objects. The inference of relationships is an important issue for several application do-
mains. In biology, for example, we can discover how much time the pandas A and B
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stayed together in the last summer, and which areas they visited together and alone. For
investigative applications, we can verify the total time that a group of individuals stayed
close in the last month, and how much time two objects Y and Z of this group stayed
together and which areas they visited with a bigger group of objects. We strongly believe
that the relationship of objects is directly related to amount of time they spend together.
For instance, a married couple stays more time together than a couple that is dating, and
the couples, in turn, stay more time together than a couple of friends.

To infer relationships from encounter patterns is not a trivial task. Let us consider
the example shown in Figure 1, where Louis met Marie and then both met John, and after
they met Susan, at day 5th May. For this day we have four encounters, each one with
duration of one hour. The first encounter is between Louis and Marie (from 9 to 10). The
second encounter is between Louis, Marie and John (from 10 to 11). The third encounter
is between Louis and Marie alone (from 11 to 12), and the fourth encounter is between
Louis, Marie and Susan (from 12 to 13). This example illustrates three important things
when we reason about measuring the relationship degree based on encounters: the number
of objects present on each encounter, the frequency, and the duration. In this example,
still considering Sth of May, the duration of the encounter is higher for Louis and Marie,
corresponding to 4 hours in total. So we can consider that Louis and Marie have a stronger
relationship degree among each other than with John and Susan. When considering the
encounter of Louis and Marie alone, their encounter has 2 hours of duration. Considering
the whole time they stayed together at 5th of May, the duration is 4 hours. This example
shows that it is very complex to analyze encounters and relationships between moving
objects, and that we must analyze every different encounter and with all different objects.

@m—]ouis
===Marie
John

——— -————— —_— smmeSysan

l9h 10h 11h 12h 13h ) e 19h 10h 11h 12h 13h1 ‘9h 10h 11h 12h 13h‘
Y T Y
5th May 12t May 19t May

Figure 1. Temporal Representation of encounters between the same individuals

In this paper we propose a new definition of level-wise encounter patterns. From
these encounters we propose an algorithm to infer relationships, called MORE (Moving
Objects Relationship inference from Encounters). The main contribution of our approach
is the definition of level-wise encounter patterns and the inference of moving object rela-
tionships, considering their encounters, the frequency of the encounters, the duration, and
the encounter area. In this work we go one step further to existing approaches, which do
only detect encounters from trajectory data and do not infer objects relationships, making
the following contributions: (i) define encounter patterns as well as the encounter area
from trajectory data; (ii) define different measures to compute the relationship of individ-
uals based on the frequency, the duration, and the area of their encounters; (iii) propose an
efficient algorithm to infer the relationship degree of individuals from their trajectories.

The rest of the paper is organized as follows. In section 2 we summarize the
related work. In Section 3 we present the main definitions and the algorithm M ORE. In
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Section 4 we present preliminary experiments to evaluate the algorithm, and finally, the
conclusions are presented on Section 5.

2. Related Work

In this section we summarize the works that define encounters and flocks, and since there
are only a few works that infer relationships from GPS trajectories, we present some meth-
ods that infer relationships from other types of spatio-temporal data, as phone logs/calls
and social networks.

2.1. Encounters

Among the few existing studies in the literature that directly address the encounter be-
tween trajectories we can highlight the work of [Laube et al. 2005], which defines a set of
patterns considering geographic and temporal aspects. Between these patterns are flock
and encounter. The flock pattern can be detected from the REMO (RElative Motion Pat-
tern) matrix, which relates the time and the direction of objects movements. When ob-
jects are moving in the same direction at the same time, and within a certain area, they
present a flock behavior. The encounter pattern cannot be detected from the REMO ma-
trix, because objects come from different directions until they meet. To detect encounters,
[Laube et al. 2005] proposed a division of the space in cells of a given size, and the tra-
jectories that intersect the same cells in a similar time have an encounter pattern.

Gudmundsson in [Gudmundsson et al. 2007] defines encounter as a minimal num-
ber of objects m that ’stay” inside an area of size r at a certain time. A flock is defined
as a set of m objects that "move” inside a spatio-temporal cylinder of size r for a cer-
tain time, and objects may leave or enter the flock. In this work both encounter and
flock are considered as different patterns, while in our proposal we assume that objects
that are together, either stopped or moving, are having an encounter. Indeed, while in
[Gudmundsson et al. 2007] objects enter and leave a flock, we create a different encounter
every time the group changes.

Bak in [Bak et al. 2012] proposed an algorithm to detect encounters focused on
visual analysis. The main idea of the algorithm is to connect with a line two points of
different objects that are close in space and time. The user can vary the space and time
threshold, visualizing the connected dots and evaluating the results.

In our work, we consider as an encounter the whole time that the objects remain
together, does not matter if they are stopped or moving. Usually, a whole encounter is
separated in two patterns to fit in the definitions of encounter and flock. For example, a
walk with a friend followed by a visit to a restaurant is separated in two parts: the walk is
a flock pattern and the staying in a restaurant, an encounter.

The works about encounters and flocks focused only on detecting the pattern, not
on the inference of relationships between level-wise objects, which is the objective of our
work. Indeed, the area of the encounters and flocks is not defined.

2.2. Relationship Inference from GSM and Social Network

Before describing these works we must highlight that the task of relationship inference
in social network is only an affine topic, and it is more trivial since much information
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about friendship is available in the data. In the domain of social network analysis there
are several works that try to infer the relationship between pairs of objects. Some of
these works use information of phone logs and calls like [Eagle et al. 2009], others use
only social network data where the user makes a check-in at some place, or shares a
geo-tagged picture [Crandall et al. 2010], [Pham et al. 2013] and [Wang et al. 2014].

A friendship network structure based on mobile phone data was proposed in
[Eagle et al. 2009]. A group of students answered if another member of the group is a
friend or not. In a first step, each pair of objects is classified as “Reciprocal Friends”,
”Non-Reciprocal Friends” and "Reciprocal Non-Friends”. Then, the friendship relations
are inferred using proximity information of the mobile phones, based on phone logs, calls,
and Bluetooth connections. Finally, the proximity of these persons is evaluated based on
the day of the week and the kind of place the objects met. The output is a friendship
network, where each node is an individual and the edge corresponds to a score based on
two factors: the first one is based on the proximity at place of work, and the second is
based on the proximity outside the work environment.

Crandall, in [Crandall et al. 2010], proposed a model to infer social ties between
pairs of users, where spatio-temporal co-occurrences are detected based on shared photos
of the site Flickr. First, the space is divided in cells, then if both users shared a photo
within ¢ days in the same cell, a co-occurrence is detected. Finally, the number of different
cells visited by the same pair is counted. Based on the number of different co-locations
between the pair of objects a probabilistic model is used to compute the friendship.

A model to infer social strength called EBM (Entropy-Based Model) was pro-
posed by Pham in [Pham et al. 2013]. It analyses information from the social network
Gowalla, that allows the users to make check-ins when they are in a known place. First,
the co-occurrences are computed for each pair of objects. The co-occurrences are coin-
cident check-ins of the objects, considering space and time. Finally, the relationship is
calculated considering the entropy of the places and the frequency of the co-occurrences.

Another model to infer relationship strength between pairs of users based on
check-ins from location-based social networks was recently proposed by Wang in
[Wang et al. 2014]. This approach is based on personal, global, and temporal factors.
The personal factor considers an individual user’s probability to visit a certain location.
The global factor captures the popularity of a location to the general public. The temporal
factor considers the time gaps between consecutive meeting events.

Even though check-ins from social networks are useful to infer relationships be-
tween people, when we want to measure the relationship among animals or people which
do not use social networks (e.g. house arrest criminals), GPS trajectories are the most
appropriate data.

2.3. Relationships in Trajectories of Moving Objects

Only a few works use GPS data to infer relationships, like [Brilhante et al. 2012], that
infers relationships among places. Because GPS data are more complex and lack in re-
lationship information, [Brilhante et al. 2012] use summarized trajectories, i.e., stops or
stay points to reduce the complexity. In our approach we use raw trajectories, first comput-
ing encounters/flocks and from these encounters propose a method to infer relationships.
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Brilhante [Brilhante et al. 2012] proposed a methodology to discover communi-
ties of interesting places, using as input the trajectories of moving objects and known
POIs (Point of Interest). The first step is to detect stops at the given POIs. If a group of
trajectories has short stops on a pair of POIs, these POIs are connected. This work does
not infer relationships among users, only between points of interest.

In summary, none of the related work infer a relationship degree based on encoun-
ters of groups of multiple objects, and none of them consider area, duration and frequency
of encounter as measures to determine the relationship degree.

3. Main Definitions and the Proposed Algorithm

In this section we first present the main concepts to define an encounter pattern, the en-
counter area, and the relationship degree between objects (Section 3.1). In Section 3.2 we
present the algorithm M ORE (Moving Objects Relationship inference from on Encoun-
ters), an algorithm to infer the relationship degree between a group of objects.

3.1. Main Concepts

We start our definitions with the well known concepts of point, trajectory, and subtrajec-
tory, inspired by the definitions presented in [de Lucca Siqueira and Bogorny 2011] and
[Bogorny et al. 2014].

Definition 1 Point. A point p is a tuple (x,y,t), where x and y are geographic coordinates
that represent a position in space and t is the timestamp in which the point was collected.

A trajectory is an ordered list of points that correspond to the position of the object
in space at a time, as presented in Definition 2.

Definition 2 Trajectory. A trajectory T, = (p1,p2, D3, ..., Dn) is an ordered list, where o
is the object identifier, p; = (;,y;,t;) and t; <ty <t3 < ... <t,.

It is well known that several trajectory patterns do not hold for an entire trajectory,
but only in a trajectory part. For the encounter pattern it is not different. Two trajectories
may not be together during all their life, but only in parts of their movements, and this
parts are called subtrajectories. The definition of subtrajectory is given in Definition 3.

Definition 3 Subtrajectory. A subtrajectory s of T is a list of consecutive points
(Pky Pka1s oy Diest), Where p; € T and k + 1 < n.

[Laube et al. 2005], [Gudmundsson et al. 2007] and [Dodge et al. 2008] define an
encounter as a set of objects that are close in space and time. Our definition for encounter
is a bit different, where we compute encounters of every object in the database in rela-
tion to other objects which stay close in space and time, for a minimal amount for time.
For example, in Figure 1, we compute the encounters between Louis and Marie, between
Louis, Marie and John, and between Louis, Marie and Susan. We do not require a mini-
mal number of objects, since we are, in fact, interested in all possible encounters of any
number of two or more objects.

In this work we do not distinguish stationary and moving encounters, since we
want to know when two or more objects stay together. Definition 4 presents the concept
of encounter. For the sake of simplicity, in the following we will restrict the definitions for
two moving objects, but note that the generalization to more than two objects is straight-
forward.
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Definition 4 Encounter. Let T) = (p1,p2, D3, -, Pn) and To = {(q1, G2, G3, ..., Gm) be two
trajectories. Let S| = (DayDat1s -+ Patu) and So = (qb, Qos1, -, Pbrv) be two subtraje-
tories of 11 and Ty, respectively. 11 and T have an encounter at two maximal subtra-
jectories sy and sy w.r.t a spatial threshold A4, a temporal threshold A\, and a minimum
duration munTime IIF the following conditions hold:

o Vp;, € 51,dg; € So| spatialDist( Pinq;) < Ag N temporalDist(p;,q;) < A
o Vg, € so,3p; € s1| spatialDist(q;,p;) < Ag A temporalDist(q;,p;) < Ay
o (Min(Paty-t,Qprov-t) - max(pqy.t,qp.t)) > minTime

where the functions spatial Dist() and temporal Dist() compute, respectively, the Eu-
clidean distance and the temporal distance between the points p; and q;.

To the best of our knowledge, there are no works in the literature which take
into account the area where two or more objects have an encounter to infer relationships.
In this work, as we want to measure the relationship degree for all combinations (sets)
of objects, just assuming that objects should stay together (close) in space for a certain
amount of time is not enough. However, if we consider meetings at different places, we
reduce the fact that they meet only by coincidence. For instance, objects that leave in
a nearby area and work at a nearby place (e.g. in a shopping center), will be detected
as having encounters, even if these encounters represent a coincidence. Although the
coincidence may generate several encounters, we cannot ignore them, because for several
applications, mainly for security, objects that came close in space and time may have
a contact, and this contact should be considered for relationship inference. However,
by considering that these objects that have frequent encounters at the same places (e.g.
nearby homes and working place) also have encounters in different areas, the probability
of coincidence will be reduced, and the confidence that these objects know each other will
increase the relationship degree.

We define encounter area as the union of the subtrajectories of all trajectories

involved in the encounter. More formally,

Definition 5 Encounter area. Let e be an encounter between the subtrajectories s; and
S9, Wkt Ag, Ay and minTime. The encounter area a. is given by the formula:

a. = buf fer(makeLine(sy), Ag/2) Ubuf fer(makeLine(sy), Aq/2) (D

where makeline() is a function that transforms a set of points of a subtrajectory
sin aline and buf fer() is a function that builds a polygon of size Ay/2 around s.

To take into account the area of an encounter, hereafter we refer to encounter
as a tuple e = (O, beginTime, endTime, a), where O is the set of objects involved in
the encounter, beginTime and end1'ime are, respectively, the begin and end time of the
encounter, and a is the spatial area of the encounter.

To define the relationship degree between two or more objects based on their en-
counters, we consider three main criteria: the frequency of the encounters, the duration,
and the different areas where the encounters take place.

The frequency reveals how many times two or more objects meet.
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Definition 6 Frequency-Based Relationship Degree. Let DB = ey, eq,...,e, be a set
of encounters w.r.t. g, Ay and minTime, of all sets of moving objects in a trajectory
database. Let E(0;,0;) denote the set of all encounters between any objects o; and o;.
The frequency- based relationship degree between a pair (01, 02) is given by:

|E(01,09)|
maz(|E(0;, 05)|)

Ry(01,02) = (2

where | X | represents the cardinality of X.

The duration of an encounter tells how much time two objects spend together. We
assume that the higher the duration of an encounter is, the higher will be the relationship
between the objects. The duration based relationship degree is given in Definition 7.

Definition 7 Duration-Based Relationship Degree. Let DB = eq,es, ..., e, be a set of
encounters w.rt. Ag, Ay and minTime, of all sets of moving objects in a trajectory
database. Let E(o;,0;) denote the set of all encounters between 0, and 0,. The duration
based relationship degree between o, and 0, is:

ZZ:|E(01102)\

) (endTime, — beginTime.)

Ry(o1,02) = (3)

mazx (ZzzllE(oi’oj)‘(endTimez - begz’nTz'mez))

The first idea when we think about defining a relationship degree between a group
of several objects is to use the duration and frequency. However, in downtown areas we
can find different objects close to each other in space and time. In these cases, people
who get the same bus everyday together could have a strong relationship, when they not
even know each other. To reduce this problem we define that a group that has encounters
in different areas has a higher relationship degree. The more different areas two or more
objects have an encounter, the higher is the probability that the objects know each other.
Therefore, we define the area-based relationship according to Definition 8.

Definition 8 Area-Based Relationship Degree. Let DB = ey, es,...,e, be a set of
encounters w.r.t. Ny, A; and minTime, of all sets of moving objects in a trajec-
tory database. Let E(01,09) denote the set of all encounters between o, and 0y. Let
A(o1,09) = {a1,az,...,a,}a; Nazy N .. = () be the set of different encounter areas
between o1 and os. The area-based relationship degree between o, and oy is:

|A(01, 09)|

R,(01,05) = maz(|A(0;, 0;)])

4)

Considering duration, frequency, and encounter area, the final relationship degree
between two or more objects is computed by the sum of the degrees, as shown in Defini-
tion 9.

Definition 9 Relationship Degree. Let DB = ey, es, ..., e, be a set of encounters w.r.t.
Ay, Ay and minTime, of all sets of moving objects in a trajectory database. Let E(0;, 0;)
denote the set of all encounters between o, and 0o. The final relationship degree between
01 and o0y is computed as:

R(01,02) = (Rf(01,02) + Ra(01,02) + Ry(01,02))/3 (5)
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In the following section we present an algorithm to infer the relationship degree
between moving objects, called MORE (Moving Objects Relationship inference from
Encounters)

3.2. MORE (Moving Objects Relationship inference from Encounters)

The input of the algorithm M O RE, shown in Listing 3, is: a set of trajectories 7', the time
tolerance A\, the distance threshold A4, and the minimum time for detecting an encounter
manTvme. The output is a list with the relationship degree of the moving objects R.

Listing 1. MORE Algorithm

Algorithm MORE
Input: 7T //set of trajectories
A¢ //Time Tolerance
Ay //Distance Threshold
minTime //Minimum Encounter Tolerance
Output: R //list of objects, with their relationship degree

0NN BN =

E = BeingTogether (T, A¢, Ag, minTime)
9 FE = computeArea(E, Ay)
10 encountersPerObjects = retrieveEncountersPerObjects (E)

11 mazy; = getMaxFrequence (encountersPerObjects)
12 mazy = getMaxDuration (encountersPerObjects)
13 maz, = getMaxDiffAreasCount (encountersPerObjects)

14 for each set of objects o€ encountersPerObjects.values do

15 Ry = getFrequencyO f(encountersPerObjects.get(o)) | maxy
16 Ry = sumDurationsO f(encountersPerObjects.get(o)) | mazg
17 Rq = getDistinctsAreasO f(encountersPerObjects.get(o)) | maxq

18 result.R = (Ry+ Rq+ Ra)/3
19 R.put(e.O, result)

20 end for

21  return R

The first step is to compute the encounters (according to Definition 4), using
the function BeingTogether() (line 8). Since we have the set of encounters F, it is
possible to compute the encounter area (according to Definition 5), using the function
computeArea() (line 9). Two encounter areas are considered as only one if their inter-
section is higher than 75%.

In order to compute the frequency, the duration, and the distinct areas of the en-
counters, the algorithm transforms the set of encounters F into a list that contains each
different group of objects with their respective encounters (line 10). Figure 2 shows this
transformation for the encounters between Marie (01), Louis (02), John (03 ) and Susan
(04), according to Figure 1. Since we have the groups of objects and their respective

id |0 area |beginTime endTime

e, |[{1.2} |a, 5™ May 9h 5" May 10h
e, {123} [a, |5"May10h |5" May 11h
e, [(1,2} as 50 May 11h |5™ May 12h oids [encounters

e, {124} [a, [5"May12h [5" May 13h |:> {1.2} {er.eze3€465

e; {123} [as |12"May9h |[12" May 11h €6 €7, €5 €9, E1o, €11}
e |(12) |as |12 May 11h [12" May 12h {123} |{e,, e5, &}

e, |{1.24} [a, |12" May 12h |12 May 13h {1.2.4}|{eq, &7, €11}

e, [{1.2} |as |19"May9h |[19" May 10h
e, [{1.23} [a, 19" May 10h [19" May 11h
e [{1.2} |ay |19 May 11h [19% May 12h
e, [{1.24} [a;, 19" May 12h [19" May 13h

Figure 2. (left) list of encounters and (right) encounters grouped by objects
encounters, the next step of the algorithm is to get the maximum values for the frequency
(line 11), duration (line 12), and the distinct area of the encounters (line 13). Then, for
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each group of objects (line 14) the algorithm computes the frequency (line 15), the dura-
tion (line 16) and the area of the encounters (line 17) according to Definitions 6, 7 and
8, respectively. Finally, the relationship degree is computed (line 18) and added to a list
(line 19).

The complexity of the algorithm M ORE is given by the complexity of the func-
tion to transform the encounter list retrieve EncountersPerObjects plus the number of
different sets of objects, represented by the variable encountersPerObjects. In the it-
eration are computed frequency, duration, and different areas for each different group of
objects, having a cost of O * m, where O is the size of the transformed list and m is the
number of encounters.

4. Preliminary Experiments
In this section we present two preliminary experiments: a running example and a real
trajectory dataset where the encounters are known.

4.1. MORE applied on a Running Example

For a better understanding of the relationship inference we apply the M ORE algorithm
over the example shown in Figure 1. The output is illustrated on Table 1, which is sorted
in descending order by R, forming a relationship degree rank. Table 1 shows frequency,
duration, and number of different encounter areas between Marie, Louis, John and Susan.

Table 1. Relationship Measures for the running example

o] frequency | duration | area | Ry | Ry Rs | R
{Marie, Louis} 3 12 3 1 1 1 1
{Marie, Louis, John} 3 4 3 1 0.333 1 0.778
{Marie, Louis, Susan} | 3 3 3 1 0.25 1 0.75

According to Figure 1, Marie and Louis stayed together from 9h to 13h on each
one of the three days, therefore the frequency of this group is equal to 3 and the duration
is 12h. Marie, Louis and Susan, stayed together for one hour on 5th of May (from 12h to
13h), one hour on 12th of May and another hour on 19th of May, hence the total duration
is 3 hours. Assuming that, in this example, the objects met at three different places, each
group has 3 different encounter areas.

Observing the example in Figure 1, the group with the highest relationship during
the period between 5th of May to 19th of May was Marie and Louis. Notice that the
relationship degree between the objects Marie, Louis and John is a bit higher than between
the objects Marie, Louis and Susan. This is because there was one encounter (Figure 1)
at 12th of May between objects Marie, Louis, John with duration of 2 hours (from h to
11h), while all others had the same one hour of duration.

4.2. UFSC dataset

On August 13th, 2015, a group of eleven volunteers walked around the UFSC campus
to simulate encounters, generating a dataset with 29329 points. The seven simulated
encounters are represented by rectangles in different colors in Table 2 and are visually
represented in Figure 3. The participants received a smartphone, a map, and the instruc-
tions to visit three different places during the time described in Table 2 (from 17:40 to
18:20). The visits, with around 10 minutes of duration each, happened at different places
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as shown in Table 2. For instance objects 1, 2, and 3 have only one encounter alone, at
Place; and in the path to Place;, where they met object 4, generating a new encounter
with four objects. Objects 7 and 8, for instance, have two different encounters at Places
(from 17:40 to 17:50 and 18:10 to 18:20). The detected encounters are illustrated in Fig-
ure 3. All simulated encounters were correctly detected by the algorithm considering A,
=10s, Ay =15m, minT'ime = 5 min.

Table 2. Encounters at UFSC

oid 1st place [17:40, 17:50] = 2nd place [17:55, 18:05] = 3rd place [18:10, 18:20]
1 Placer =

2 Placer =

3 Placer =

4 Placeg = Placer =

5 Placea = Placey =

6 Placea = Placey =

7 Places = Placesg = Places
8 Places = Placeg = Places
9 Placey = Placeg = Placeg
10 Placey = Placeg = Places
11 Places = Places = Placey

id

fESEEEEN BN
FERO®®NOUVAWN -

o

Figure 3. Trajectories and Encounters at UFSC

Table 3. Relationship Degrees between objects at UFSC

o frequency | duration | area | Ry | Rq R, R
{1,2,3} 1 35.1 3 05 ] 0992 |1 0.831
{5,6} 1 354 2 05 | 1 0.667 | 0.722
7,8} 2 24.3 1 1 0.687 | 0.333 | 0.673
1,2,3,4} 1 19.9 2 0.5 | 0562 | 0.667 | 0.576
10,9} 1 27.5 1 0.5 | 0.779 | 0.333 | 0.537
{1,23456} | 1 8.4 1 0.5 | 0.238 | 0.333 | 0.357

Table 3 shows the relationship degree for each group of objects, and is sorted in
descending order of R. As can be seen in Table 3, objects 1, 2 and 3 have the highest
relationship degree (0.831). Those objects stayed together during all the experiment and
their encounters happened at three different areas. Objects 5 and 6 also stayed together
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during all the experiment. However, they are the second in the rank because their encoun-
ters happened at only two different areas. As can be seen in Table 2, while objects 5 and
6 visited Placey and Place, they stayed together alone, generating only one encounter in
this case.

Although objects 7 and 8 have the highest frequency of the experiment, they are
only the third group of the rank. This happens because although they had two encounters,
they were at the same place (Places), so having only one encounter area.

The group of objects 1, 2, 3, 4, 5, and 6 had the lowest relationship degree (0.357),
because this group had only one encounter, and this encounter had the lowest duration of
the experiment. Object 11 (see Table 2) did not have any encounter during the experiment,
so it has no relationship.

This experiment showed one of the key advantages of the M O RE algorithm over
related work: the inference of a relationship degree between moving objects. Indepen-
dently of the size of the group, if they had an encounter, their relationship degree will
be calculated. Even in a small dataset it is possible to understand the relevance of this
information. The knowledge of relationship allows the understanding of which objects
are the most related inside larger groups.

Further experiments, with larger datasets and comparing the M ORE algorithm
with related work will be conducted in an extended version of this paper.

5. Conclusion and Future Work

In the last two decades, there was a popularization of different GPS-enabled devices, that
allow recording the moving objects location. Consequently, there was an increase in the
amount of mobility data generated from these devices. To best of our knowledge, none
of existing works in the literature proposed the inference of relationship degree between
multiple objects based on their encounter patterns extracted from trajectories.

In this work we proposed M ORE, a new algorithm to compute the relationship
degree of a level-wise moving objects. This algorithm is based on the new proposed defi-
nitions of encounter and encounter area. The algorithm considers the encounter duration,
the frequency of encounters, and the different encounter areas. M O RE presents concep-
tual advantages over related work, such as the possibility to infer the relationship degree
between multiple objects. We evaluated the proposed method with a running example and
performed an experimental study with real trajectory data in a simulated scenario, where
the encounters were known. The results of the experiment showed that our method was
able to identify relationships between pairs and groups of objects.

In the proposed approach we use raw trajectory data without considering semantic
information. However, as future ongoing work, we are investigating new measures to
ensure the value of a relationship degree among a group of objects.
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