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ABSTRACT 

In this work we study the stability of digital controls 

of flexible/Vibratory aerospace/automobile systems by the 

graph norm technique,  

occurring in sampled-data control systems due to sampling 

period variations. To do so, this work tries to establish  

regions (graphs) of stability and instability in a Banach 

Space, the distances (norms) between them and a given 

design to detect analytically and/or numerically its margins 

of stability or conditions of instability.  

Based on that, we sketch the first steps for a design 

methodology of stable digital controllers of 

flexible/vibratory systems  

embedded in a sampled-data system with adjustable 

sampling periods of A/D and D/A  

converters. A short tutorial about the graph norm technique 

is also given and some theoretical results  

as well numerical results are shown. This work was done in 

two folds to unmask the stability secrets hidden in a general 

sampled-data control system, until today not revelated. The 

first part we have used the graph norm and at the second 

part we made use of the Liapunov stability theory. 

PART I: TRIALS THROUGH THE NORM GRAPH 

TO OBTAIN SOME INFORMATION ABOUT 

STABILITY REGIONS FOR SAMPLED CONTROL 

SYSTEMS AS FUNCTION OF THE SAMPLING 

PERIOD 

As explained in [1], the true discrete could be given by  
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where the first term of the second member is the z-transform 

of the plant and the second term is the aliasing rewrite 

below, 
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For stability study is convenient to suppose that this aliasing 

term can converge to a value ∞<M  
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We can try calculate a general expression to M as follows, 
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From the equation above be Ak a general term given by, 
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Figure 2: convergence test 

Following with some calculations we can attain that, 
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Is M convergent? M will be limited if the series that define 

it is convergent. We will verify a case of convergence. By 

other side is important remember that, by hypothesis, 

although on has a limited M high disturbances can 

instabilize the sampled-data system. 

We will use the transfer function as a rational form 

.
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Applying this rational form in M, 
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Remembering that 1e
k2j =π−

, finally, 
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That is a general expression for the upper bound M. 

Example: If 
d

n  is a rigid body with inertia J 
2Js

1

d
n = , 

than, 
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For a k very greater than the unity the k
th
 term of M can 

assume the following format, 
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It shows that this k
th
 term can be despicable if T is low but 

if T is high this term can diverge. If M diverge is clear that 

the sampled-data control system will diverge too. The 

disturbances over the plant due the aliasing will very high.  

Example: Consider now that 
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Its k
th
 term is, 
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For many values for T we can see in the Figure that this 

series converges. 

 

Figura 1: convergence of M. 

Example: now suppose that 
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Its k
th
 term is, 
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As shown in the Figure, M is again convergent. 
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Figura 2: convergence of M. 

From these results and the knowledge about graph norm 

(see Appendix), we can sketch the following Lemma, 

presented here without proof, 

Hypothesis: for a sampled data control system with 

sampling period T we can suppose that the closed-loop 

stability can guaranteed if 

{ } ( )TMn,d  infG
GrafoT <=

∞∞                             �
 

 

PART II: TRIALS THROUGH LIAPUNOV THEORY 

TO OBTAIN SOME INFORMATION ABOUT 

STABILITY REGIONS FOR SAMPLED CONTROL 

SYSTEMS AS FUNCTION OF THE SAMPLING 

PERIOD 

As given in [3] a class of distributed parameter systems, 

which includes flexible structures, may be described by, 

BuAvv +=&     Eq 15 

with v(0)=vo and u  is the direct velocity feedback control 

(DVFB) that gives, 

vAv c=&      Eq 16 

where, 'BQBAA c −=  where Q is positive-definite. 

Using the Backward s-z mapping Balas
[3] 
 has presented the 

following discrete-time expression for the control system, 

kck1k v.A.Tvv +=+    Eq 17 

And using a Liapunov function given by, 
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where P is positive-definite, could be shown that 
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that we must have 0Vk <∆  for the asymptotically 

stability, as shown in the following theorem, 

Theorem 1 (Balas
[3]
): the discrete-time system vk+1 remains 
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If we use the Tustin rule
[10,11]

 as the s-z mapping we can 

obtain a more accurate and general result that done in [3] as 

follows, 

Theorem 2: the discrete-time system vk+1 remains stable as 

long as 
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Proof: the equation vAv c=&  mapped by Tustin rule is 

given by 
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Now making use that the Padé approximant for the 

exponential function is gven by, 
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As we see it is possible reconstruct the rational form 

presented by the exact exponential form, 
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Be P>0 and the Liapunov functions, 
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)Pe)'e(()Q(
TATA

maxmin
ccλ>λ .                                              

� 

 

Could be shown that if we expand the exponential matricial 

function in linear terms in Theorem 2 we can obtain the 

result of the Theorem 1, shown that the Theorem 1 is a 

particular case of the Theorem 2. 

CONCLUSION 

In this work we have presented two possible paths to solve 

the problem about found analytically the regions of stability 

in sampled-data control systems. The first path is through 

the graph norm, disposal only in reference [7] and that 

presents as a difficult method for obtain the solution of the 

problem. The second path is more easy to calculate and a 

general result was presented in theorem 2. In a next work 

we will present results using many methods of numerical 

approximations for the exponential function (like rational 

forms of Padé, Chebyshev, and others), Lagrange-Sylvester, 

etc, as extensions of Theorem 2. 
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APPENDIX: A BRIEF TUTORIAL ABOUT THE 

GRAPH NORM 

In this appendix we will show as to use the graph norm
[7]
 

essaying steps for application to the problem in question: 

analytical detection of the influence of the sampling-period 

in the stability of sampled-data control systems. Some 

definitions and preliminary considerations are important, 

Definition 1: GRAPH. The graph of a plant P if the set of 

all pairs input-output bounded. More accurate, if S is the set 

of all stable rational-proper and scalar functions and 
mn)s(RP +∈  then the graph of O is given by: 
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Assume now that 
+
∞H  is the set of all stable rational-proper 

funtions analytical at the right half-plane s (that do not have 

poles in this region). Assume also that 
−
∞H  is the set of all 

instable functions (not-analytical at the rigth half-plane s). 

Be 
+
∞∈Hf . The Infinite-Norm of f can be described by the 

discrete case by, 
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or to the continuous case, 
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It is clear that the obtained result does not describe a norm 

  ⋅  that must be a continuous positive definite function
[7,8]

. 

Hence it does not pertains to none metric spaces. 

In front this difficulty Vidyasagar
[7]
 hás proposed a new 

measure named graph metric, as we will see here. Assume 

that 
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The graph metric of f=P when P is the plant used is given 
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Where S is the set of the stable rational-proper and scalar 

funtions. If the graph of P is a set defined by, 
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Finally the graph norm will be defined by, 
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To obtain quantitative results we must metrizing the graph 

topology, i.e., we must define a metric over M(R(s)) that the 

convergence (and consequently the continuity) be 

equivalent to the convergence in the graph topology. This is 

the graph metric. Before we will define some concepts. 

Definition: normalized r.c.f.. A r.c.f. (“right coprime 

factorization”) of  ))s(R(MP∈  is said to be normalized if 
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Definition: GRAPH METRIC. Suppose 
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Example: if CC:f → , calculate 
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Doing s=-s: 
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Finaly, the distance of the function ( )
( )1s.s
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origin is equal to 1. 


