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Abstract: The coupled nonlinear pitch-bending 
responses of a free-free beam in a circular orbit, when the 
beam is subjected to a periodic external excitation, are 
analyzed. The nonlinearities present in the governing 
equations of motions are both due to deformation of the 
beam (i.e. curvature and inertia nonlinearities) and to the 
gravity-gradient moments, due to central attraction massive 
body.  Multiple Scale Perturbation method was used to 
analyze the governing equations of motion. Several 
resonant motions exhibited by the system are analyzed in 
details, namely, harmonic resonances when the frequency 
of the external excitation, , is either near the natural 
frequency of the flexural or of the pitch motion, and a 
superharmonic resonance when   is near one half of the 
natural frequency for the pitch motion. The latter two 
resonances are associated with very low excitation 
frequencies. We also showed some differences when we 
consider or not the presence of the nonlinearities due to 
curvature of the beam in orbit in superhrmonic resonance. 
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1. INTRODUCTION 

 The dynamic behavior of a flexible beam is of 
increasing interest on engineering sciences, because it is 
useful on some mathematical models those are useful to 
dynamics analysis of blades of helicopters, robotic 
manipulators, and antennas in spacecrafts, flexible satellites 
and other systems that have flexible and angular 
movements. For a beam in orbit, gravity gradient effects 
make the beam oscillate relatively to an orbital referential 
with pitch frequencies (movement around of the normal 
orbit) those are the same size of the orbital angular 
velocity. There are other forces those acting on objects on 
space, that same be small, they modified along of the time 
the orbital elements. An example of these forces, we may 
mention the solar radiation disturbance [1] and the 
atmospheric drag [2]. These two forces are illustrated in 
Fig. 1. The effects of these forces are not considered in this 
work. We will consider the gravity gradient torque only. 
The linear formulation shows that the vibrations of an 
isotropic beam in two principal planes are independents, so 
a forced motion in a plane is always stable in this plane. In 
the general case  when the amplitude of vibration are  large, 
several nonlinear effects, such as nonlinear curvature, axial 
inertia forces, damping and nonlinearities of materials [3], 

induce nonlinear terms in equations of the motion and in  
their boundary conditions. Several authors studied flexible 
spacecraft models [4]-[8], that were approximate for free-
free beams, as well as models of spatial vehicle. In version 
of rigid body including articulate flexible appendages. 
Several of these studies include a linearization of the 
equations of the motion. 

  
 

Fig. 1. Illustration of pressure radiation solar and atmospheric 
drag acting on beam in orbit 

 
2. MATHEMATICAL MODEL AND GOVERNING 
EQUATIONS OF MOTION 
 

The system considered here, consists of a free-free 
homogeneous beam of length L and constant specific mass 
m, and stiffness , whose center of mass C is in a circular 
orbit around a center of attraction E.  
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Fig. 2. Free-free beam in circular orbit 
 
As shown in Fig. 2, the motion is described in terms of 

the elastic deformation v(s, t) (normalized by the length of 
the beam) and of the pitch angle ( )tθ  between a “local 
vertical” and a principal axis of the deformed beam. The 
quantities s and t are, respectively, arc-length along the 



beam, normalized by L, and mormalized time. The 
variables and nomenclatures used here are the same as 
those used by [3]. Let the beam be subjected to a 
distributed periodic force ( ) ( ) ( )tsEtsF Ω= cos, ηη  that is 

applied along of the η̂  direction shown in Fig. 2. with v(s,t) 
approximated as v(s,t)=F(s)vt(t), and dots used to denote 
differentiation with respect to normalized time t, the ( )3εO  
normalized differential equations of motion are: 
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 The full governing differential equations of motion 
were expanded so those perturbation methods can be used 
to analyze de motion. In equations (1) and (2), c is a 
structural damping coefficient, normalized 
by ζDmL //2 , ω is the undamped natural frequency of 

the flexural motion and cω is the angular velocity of the 
circular orbit of the beam’s mass center; both were 
normalized by the quantity ζDmL /2 .  

    The quantities 321 ,, βββ  are Galerkin coefficients 
defined in [4]. 
      The value of the constants 21 ,, ββω and 3β for the first 
mode of oscillation, are given in Table 1 for several values 
of cω . Note that for 10 ≤< cω the values of the constants 
shown are within 1% of their values for the limiting case 

0=cω (which corresponds to a free-free beam that is not 
in orbit, as found in classical structural mechanics 
textbooks). 
 

Table 1. Values of and for the first mode of a beam in 
circular orbit 
21 ββω ,, 3β

cω  ω  1β  2β  3β  

0 22.373 3.0498 61.2 20 581 

0.02 22.373 3.0498 61.2 20 581 

1 22.577 3.0496 61.2 20 689 

5 27.03 3.0463 61.208 23 306 

 
 The Table 2 shows the corresponding values of 

and for several illustrative functions 
, with F(s) equal to the eigenfunction for the first 

bending mode and 

θη fff vv ,, θηf
( )sEη

10 ≤≤ cω . 
 

Table 2. Values of  and  for  and  θη fff vv ,, θηf 10 ≤≤ cω ω for 
the first bending mode 

 
( )sEη  vf  ηvf  θf  θηf  

F(s) 1 44.96 0 6.07x10-7 ≈ 0 

1 0 -54.34 0 ≈ 0 

s-1/2 0 -12.3 1 -37.9 

(s-1/2)2 -0.07247 -7.87 0 ≈ 0 

s2 -0.07247 -33.76 1 -37.9 

  
Equations (1) and (2) exhibit a number of resonance 
conditions involving the natural frequencies ω  and 

cωωθ 3= , and the frequency  of the external 
excitation. This include the internal resonances 

Ω
ωωθ ≈ and 

ωωθ 2≈ . However, these internal resonances are not 
physically possible due to the fact that θωω > . 
 To analyze the coupled motions governed by equations 
(1) and (2), we used the multiple scales method (see [4]). 

2.1. Super harmonic resonance withΩ  near 23 /cω  

 The amplitude-frequency relationship for the steady-
state motion (i. e. =θA constant  and eAθ≡ =γ constant 

2/πγ == e or 2/π− ) is: 
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  The pitch motion for this case consists of an 
oscillation with amplitude equal to, and frequency, 
superimposed on an oscillation with amplitude and 
frequency equal. The amplitude of the component with 
frequency depends on the nonlinearities and is determined 
by equation (3). 

 
 

Fig.2. Amplitude-frequency pitch response for  nearΩ 23 /cω , with 

( )3732210 .≈≤≤ ωωc  and ( ) ( )222
1 373221002043 ./.// ≈=− cvf ωωε  

2.2. Primary resonance with  near Ω ω  



The amplitude-frequency relationship for the steady-
state bending response of the beam is obtained by solving 
the conditions for elimination of secular terms [4]. If 

, the amplitude-frequency relationship 

for the harmonic response when Ω  is near 
3

2
1 4/ vvv fAf

e
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ω is essentially 
given as shown in equation (4) bellow: 
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 The values of the coefficients of and for the 

first mode are: 

2
θA 2

evA

   10 ≤≤ cω :              and           2
θA 23 cω≈ 2

evA
410x5.1≈

5=cω :            =80.53     and           =26 506 2
θA 2

evA

 Since the value of the coefficient of is much higher 

than that for the coefficient of , the amplitude-frequency 
response for the directly excited bending motion is 
essentially the same as the classical response of a Duffing 
oscillator with a softening nonlinearity. 
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Fig.3. Amplitude-frequency bending response for Ω  nearω , with 

 (or ) and  577221 ., == ωωc 10 ≤≤ cω 0502
2c .=ε

2.3. Primary resonance with  nearΩ cω3  

 For this case the equilibrium solution is given by: 
 Equilibrium E1: 

1cos0sin ±=∴=
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 Equilibrium E2: 
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 The pitch amplitude-frequency response curves for 
equilibrium E1 and E2 given by equations (5) and (7) are 
shown in Fig. 4 for 577.22,1 == ωωc (first bending 
mode), fv=15 and several values of the 
parameter ( ) 22

5 / cv ffff ωα θηθ += .Equilibrium E2 exists 

only in the region where the values of θγcos determined 
from equation (6) are not greater than unity 

 
 

Fig. 4. Amplitude-frequency pitch response for Ω  near cω3 , with 

(or ), ,  and several 

values of 

1=cω 10 ≤≤ cω 577221 ., == ωωc 15=vf
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 3.   CONCLUSIONS 

In this paper we formulated the nonlinear differential 
equations, mathematically consistent, governing the 
coupled of motion pitch-bending for a beam in orbit. The 
formulation used here related the nonlinear dynamic of 
beam carrying out account every the geometric 
nonlinearities in the system, beyond nonlinearities due 
orbital effects. The complete nonlinear equations, for a 
beam in orbit, was expanded for include every 
nonlinearities thus cubic order in an account parameter ε . 

The material that constitute the beam was assumed be 
linear and therefore, the nonlinearities due to the 
deformations was caused by changing in geometry of the 
system. This deformations include nonlinearities of inertia, 
and nonlinear terms due curvature of the beam. The 
equations also contain second and third degree, i. e., O( ) 
e O( ), of the nonlinear terms of the a coupling between 
the pitch and bending motions of the beam. Some terms in 
equations of the motion are increased by de Galerkin 
coefficients

2ε
3ε

321 ,, βββ . Nonlinear equations of the motion 
formulated and expanded to include polynomials 
nonlinearities of third order were applied to study the 
resonance of the pitch-bending coupling to the beam in 
circular orbit about the center of mass of the attractor body.  
The nonlinearities in equations are due nonlinear curvature 
and inertia effects, as well as due to the pitch-bending 
coupling and of contribution of gravity gradient moment. 
We considered three types of resonances: super harmonic 
pitch resonance, primary bending resonance and primary 
pitch resonance. For the super harmonic pitch resonance it 
was found that the first approximation for the pitch 
response consists of two harmonic components, with the 
amplitude of one of the components being affected by the 
nonlinearities. For the primary bending resonance it was 
determined that while the amplitude-frequency response of 
the bending motion is characteristic of a classical Duffing 



oscillator, the pitch component of the response consists of a 
low frequency oscillation whose amplitude is dependent on 
initial conditions and a higher frequency component whose 
amplitude is dependent on the steady-station bending 
amplitude. For the primary pitch resonance the pitch 
response was shown to exhibit characteristics of a Duffing 
oscillator with a softening nonlinearity and a parametrically 
excited Duffing oscillator. It was also found that if the 
pitch motion is started with small initial conditions within a 
certain region in space, the pitch motion will grow to a 
maximum value which is independent of the pitch initial 
conditions [3].We showed that internal resonances are not 
physically possible, because any natural frequency is 
always greater than the pitch natural frequency. The 
equation of the motion involved the inclusion of moments 
and products of inertia, including terms that are originated 
of expression of beam’s curvature. They contained too 
nonlinear terms terms originated of gravity gradient. 
Therefore, we take care to the nonlinearities were remove 
of the formulation of problem to de consistent way. The 
linearization of the equations of motion around of the 
equilibrium configuration, calling gravity gradient 
stabilization, was really a reasonable hypothesis, inasmuch 
as the disarranging with vertical local and elastic flexion 
was small. An interesting review concerning this subject 
was done by [9]. Finally we mention that the numerical 
simulations show the efficiency of the theory revised in this 
paper. We restrict the results to super harmonic case.  
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APPENDIX. SOME NUMERICAL SIMULATIONS: 
SUPER HARMONIC CASE  
 
       Considering equations (1) and (2) and taken into 
account the time interval [0 90] and Initial Conditions [0 0 
0 2] 
 
 
 
 
 
 
We will obtain by numerical integration the Fig 4a, b, c, d, 
e, f, and g 
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Fig.4a. Time history of                           Fig.4b. Time history of  v v&
 

       
 

Fig.4c. Phase portrait                Fig.4d. Time history of vvsv &. θ  
 

     
Fig.4e. Time history of                Fig.4f. Phase portrait   θ& θθ &.vs

 

 
 

Fig.4g. Poincaré’s map 


