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Abstract. The meteorological data assimilation process can be described as a procedure that 
uses observational data to improve the weather forecast produced by means of a 
mathematical model. Traditional methods include the Kalman filter. However, this method 
demands a heavy computational power. Recently, neural networks have been proposed as a 
new method for meteorological data assimilation by employing a multilayer perceptron 
network to emulate Kalman filtering at a lower computational cost. This paper presents a new 
scheme for learning process for the multilayer perceptron network, giving a more stable 
behavior for the assimilated data. Numerical results are shown for the one-dimensional 
shallow water meteorological model.  
 
Keywords: Data assimilation, Artificial neural networks, Learning process, Numerical 
weather pretiction.  
 
 



1. INTRODUCTION 
 
 The data assimilation process can be described as a procedure that uses observational 
data to improve the prediction made by an inaccurate mathematical model. For example, 
suppose a computational model where many properties are only expressed approximately, like 
turbulent fluxes. Typically, the assimilation process can be outlined as a two step process 
(Yang & Cotton, 1998): 
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where wn represents model state variable at time step n; F[.] is the mathematical (forecast) 
model, superscripts f and a denote forecast and analyzed values respectively, and dn is the 
innovation of the observational data. 

Several methods of data assimilation have been developed for air quality problems 
(Zannetti, 1990), numerical weather prediction (Daley, 1991), and numerical oceanic 
simulation (Bennet, 1992). In the case of atmospheric continuous data assimilation there are 
many deterministic and probabilistic methods (Daley, 1991). Deterministic approaches 
include dynamic relaxation, variational methods and Laplace transform, whereas probabilistic 
approaches include optimal interpolation and Kalman Filtering. Dynamic relaxation assumes 
the prediction model to be perfect, as does Laplace transform. Variational methods and 
optimal interpolation can be regarded as minimum-mean-square estimation of the atmosphere.  

In the Kalman filtering, the analysis innovation dn is computed as a linear function of the 
misfit between observation (superscript o) and forecast (superscript f): 
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 is the weight (gain) matrix, w
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 is the observed value of wn
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observation matrix. An  adaptive  extended  Kalman filter has  been tested in strongly 
nonlinear dynamical systems for assimilation procedure, such as the Lorenz chaotic system. 
Kalman filtering has the advantage of minimizing the error in the assimilation plus 
propagating this minimized error from one data insertion to the next. However, this process 
involves a heavy computational load, in particular for large meteorological systems. A 
strategy to alleviate this load is the use of neural networks to emulate the accuracy of the 
Kalman filtering (Jazwinski, 1970; Todling, 1997; Nowosad et al., 2000). Neural networks 
(Haykin, 1994) can be efficiently applied to map two data sets. Several architectures have 
been proposed for neural networks, in particular Multilayer Perceptron with backpropagation 
learning (Haykin, 1994) can be mentioned. 

In a recent paper, Gardner and Dorling (1998) did a survey on applications of artificial 
neural networks (ANN) in meteorology, where a brief introduction about ANN and the 
backpropagation algorithm are shown. It also cites applications in the atmospheric sciences 
aiming at: (i) prediction (air-quality: surface ozone concentration, sulfur dioxide 
concentrations; severe weather; Indian monsoon, Brazilian rainfall anomalies, solar radiation); 
(ii) function approximation (air-quality, modeling of non-linear transfer functions), and, (iii) 
pattern classification (cloud classification; distinction between clouds and ice or snow; 
classification of atmospheric circulation patterns; land cover classification; classification of 
convergence lines from radar imagery; etc.). Although, the use of ANN for data assimilation 



can be understood as a case of function approximation, this application was not mentioned in 
Gardner and Dorling's paper. 

The current work is based on an application of neural network with backpropagation  
learning for data assimilation. This paper shows the strategies used to optimize the training 
phase. A new scheme for learning process for the multilayer perceptron network is based on 
the changing the bias update, producing a more stable behavior for the assimilated data. The 
training was applied on the Shallow Water model (Lynch, 1984). The next section provides a 
brief introduction to neural networks. However, it is not the aim of this paper to present an 
overview on ANN. Instead, a brief description of the ANN used is focused: the Multilayer 
Perceptron with backpropagation learning (Haykin, 1994). A further section discusses the 
neural network architecture used for the data assimilation application. The final section adds 
some comments and remarks. 
 
 
2. MULTILAYER PERCEPTRON NEURAL NETWORKS WITH BACK-

PROPAGATION LEARNING  
 

An ANN is an arrangement of units characterized by:  
• a large number of very simple neuron-like processing units; 
• a large number of weight-biased connections between the units, where the knowledge of 

the network is stored; 
• a highly parallel, distributed control. 

The processing element (unit) in an ANN combines linearly multiple weighted inputs that 
are forwarded to an activation function. There are several different architectures of ANN, 
most of which depend on the learning strategy adopted.  

The multilayer perceptron with backpropagation learning, or backpropagation neural 
network, is a feed-forward network composed of an input layer, an output layer, and a number 
of hidden layers for extracting high order statistics from the input data. Each of these layers 
that may contain one or more neurons. This is typically known as supervised learning as both 
the input and the expected output are fed with data to train the network.  

Figure 1 shows a backpropagation neural network with one hidden layer. Functions g  and 
FANN provide the activation for the hidden layer and the output layer, respectively. In order to 
make the network more flexible to solve nonlinear problems, the activation functions for the 
hidden layer are sigmoid functions. 

 

 
 

Figure 1. Multilayer Perceptron with one hidden layer with m neurons. 
 



Mathematically, a perceptron network simply maps input vectors of real values into output 
vectors of real values. The connections in the figure have associated weights that are adjusted 
during learning process, thus changing the performance of the network. 

There are two distinct phases in the usage of an ANN: the training phase (learning process) 
and the running phase (activation of the network). In the training phase, the weights are 
adjusted for the best performance of the network in mapping the many input-output vector 
pairs. In the activation phase, once the weights are established, new inputs are presented to the 
network in order to compute the corresponding outputs, based on what it has learned in the 
previous phase. 

The training phase of a multilayer perceptron is controlled by a supervised learning 
algorithm. The main difference between supervised and unsupervised learning is that the latter 
uses only information contained in the input data, whereas the former requires both input and 
output (desired) data, which allows the calculation of the network error as the difference 
between the calculated output and the desired vector. The Backpropagation Algorithm 
consists of the adjustment of the network weights by backpropagating such error through the 
network. The weight change rule is a development of the perceptron learning rule: weights are 
changed by an amount proportional to the error at that neuron unit times the output of the unit 
feeding into the weight. This is the essence of the so-called delta rule. The training phase can 
make use of two modes: batch mode and sequential mode (Haykin, 1994). The former deals 
with the whole input data whereas the latter carries out the training based on each input 
pattern. The scope of this paper is restricted to batch mode in which all the input examples are 
taken at once and the learning procedure searches a set of weights θ  and biases µ  that 
minimizes the total squared error: 
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where N is the number of examples in the training set, kX  is the input vector of example k , θ  
and µ  are the weights and biases of the network, ANNF  is the approximation and F is the 
desired output value. 
 
 
3. NEW LEARNING STRATEGY  
 

There are two distinct phases for using an ANN: the training phase (learning process) and 
the running phase (activation of the network). In the training phase, the weights are adjusted 
for the best performance of the network in establishing the mapping of many input-output 
vector pairs. Once trained, the weights are fixed and new inputs can be presented to the 
network for it to compute corresponding outputs, based on what it has learned. One idea to 
improve the performance of the neural network is to look for better strategies for the learning 
process. The main idea of this strategy lies in reducing the learning rate of the bias.  

In the following algorithm iky  is the input to neuron j for each example k  and ∆ik  is the 
gradient of the error at neuron i for example k . An adaptive version of the backpropagation 
algorithm in batch mode proceeds like this (Demuth, 1994):  
 
[1.] Start with learning rate η0 , momentum constant, α =0.9, and momentum 0α =0; 
[2.] Calculate outputs of network and total me ; 
[3.] If me  is acceptable stop;  
[4.] At iteration m the backpropagation algorithm calculates: 



        [4.1] The error gradient of each neuron i for each example k : ∆ik ; 
        [4.2] New weights and biases using, for each neuron i, its inputs j and each example k  

             [4.2.1] kjk ikijy y∑ ∆=∆ )(θ  
             [4.2.2] ijymmijmij mm )()1()1()( θηαθαθ ∆−+−∆=∆  

             [4.2.3] ∑ ∆−+−∆=∆ k ikmmimi mm ηαµαµ )1()1()('  
[5.] If: 104.1 −> mm ee  then mm ηη 7.01 =+ ;  
   01 =+mα ,  go to 1;  
       Else:  
       [5.1] if 1−> mm ee  then  mm ηη 05.11 =+  and αα =+1m ; 
       [5.2] Accept weights/biases: '

ijij θθ = and '
ii µµ = ; 

       [5.3] go to 2.  
  
The proposed modification in the backpropagation algorithm affects the updating of )(' miµ∆  in 
step 4.2.3: 
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This modification tends to make the rate of change in biases µ  slower than the rate of change 
in weights θ , because usually 1<η . However no proof is presented of convergence. The only 
contribution of this work is to show a new algorithm that resulted in better function 
approximation in one specific experiment. 
 
4. NUMERICAL RESULTS 
 

Two neural network topologies were tested in this work.  
The topology for the first neural network consists of 120 neurons in the input layer, 80 

neurons in the hidden layer, and 60 neurons in the output layer. The input layer neurons 
correspond to forecast and observation data of a given parameter whereas the output layer 
neurons correspond to the assimilated data. The network was trained using 100 example s. 

The topology for the second neural network consists of 120 neurons in the input layer, 50 
neurons in each of 2 hidden layers and 60 neurons in the output layer. The rest of the setup is 
the same. The network was trained using 500 examples.  

Tests for the data assimilation process were performed on the Shallow Water physical 
model equation (Lynch, 1984). Dynamical equations for this model are: 
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where u, v are zonal and meridional wind components; φ  is the geopotential; xu ∂∂=δ  is the 
divengence; xv ∂∂=ζ  is the vorticity; oR =0.10, FR =0.16, βR =10, are dimensionless 



numbers: Rossby, Froude, and a number that gives the importance of β -effect (Lynch, 1984). 
Hereafter prognostic variables will be grouped into a vector [ ]Tw φδζ= . The system is 
discretized using forward and central finite difference method for time and space integration, 
where xN x∆ =L=10000 Km, being L the total length of the channel; xN =32 the number of grid 
points; and t∆ =100 seconds. 

 

    
(a)                                                                                   (b) 

Figure 2. Shallow water equation model - Assimilation with 80 neurons in the hidden layer 
(zonal wind component): (a) without assimilation; (b) neural network assimilation. 

 
The numerical experiment was made inserting observations every 11.1 hours. The 

observational data were the same as forecast data added to a Gaussian deviations with zero-
mean. For the data assimilation procedure tests were performed with the two neural networks. 
In the case of the first one the weights and bias were generated after 179519 iterations and the 
program took several days to finish its execution. Figure 2 shows the assimilation for the 
zonal wind component. 

 

 
 

Figure 3. Error variances for standard scheme for updating the bias in the learning phase. 
 



From figure 2, it can be noted that the neural network approach was effective as a data 
assimilation method, using the standard back-propagation scheme for training the network. 
However, the error in the assimilation process is increasing with time, as shown in figure 3. 
Experiments using more hidden layers failed.  

The assimilation is also effective for data assimilation with the second neural network 
trained using the proposed modification. But, unlike the standard back-propagation scheme, 
the error variance becomes more stable, as shown in figure 4. 

 

 
 

Figure 4. Error variances for new scheme for updating the bias in the learning phase. 
 
 
5. FINAL REMARKS 
 

The use of the proposed perceptron multilayer artificial neural network for meteorological 
data assimilation proved to be a good alternative as the results confirmed its feasibility. For 
the shallow water model, convergence was possible only after using 80 neurons in the hidden 
layer for the first neural network, and 50 neurons in the intermediate layers for the second 
one.  

The focus of the present paper is to test a new scheme for training the neural network used 
in the data assimilation. The proposed modification in the standard learning process leads to a 
better network performance, with respect to the error stability for the analyzed case. A future 
task is to investigate this learning scheme for other models, such as pollutant dispersion 
model (Zannetti, 1990), and strongly non-linear systems in chaotic regime (Lorenz, 1960; 
Miller et al., 1994; Nowosad et al., 2000a; 2000b; 2003). 

Even though the proposed modification in the training process was applied to the data 
assimilation, it is expected that similar performance would be achieved in other applications, 
mainly for function approximation situations. 
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