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Abstract— This work presents the optimum detector for 

detection of two non-orthogonal n-PAM signals with spectral 
overlapping through an AWGN band-limited channel  based 
on joint maximum-likelihood criterion. The performance of 
signal detection in terms of symbol error rate for the new 
detector is evaluated using Monte Carlo simulations. The 
obtained results from this strategy represent a benchmark to 
this sort of communication system and comparative 
simulations are carried out in order to evaluate the 
performance faced to existing detection techniques for the 
discussed system showing the obtained lower bound.  
 

Index Terms— PAM, multi-user communication, spectral 
overlapping, maximum-likelihood, detection. 

 

I. INTRODUCTION 

T HERE are few references in literature about digital 
communication systems that utilizes non-orthogonal 

signal intentionally to transmit information. The {m-QAM}2 
modulation system [1] transmits simultaneously two non-
orthogonal m-QAM signals with spectral overlapping but 
requires a very large channel bandwidth to prevent signal 
distortion [2].  

In [3] and [4] a communication system which transmits at 
the same time two non-orthogonal band-limited n-PAM 
signals with partial spectral superposition over AWGN 
channels has been presented. The structure of symbol 
detection system proposed in [3] is based on source 
separation concepts. In [4], the symbol detector uses the 
maximum-likelihood criteria and is implemented by an 
extension of Viterbi algorithm applied separately to each 
one of demodulated symbols. 

This work presents a symbol detector based on 
maximum-likelihood criteria jointly applied to the two 
demodulated signals. The solution turns out to be the 
optimum detector for the system we are handling. The new 
system performance in terms of symbol error rate is 
determined and compared with the results shown in [3-4]. 

The rest of the paper is organized as follows. In Section 
II, the system model is described, expression to signals and 
to noise are presented as well as the cross correlation 
between the noise part of demodulated signals. In Section 
III, the foundations of joint optimization using the 
maximum-likelihood criteria are discussed. Monte Carlo 

simulation results for symbol error rate are presented in 
Section IV. Finally in Section V, our conclusions and 
perspectives are stated.  
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II. SYSTEM DESCRIPTION  
The block diagram of system transmitter is given in the 

Fig.1. The signals x1(k) and x2(k) are the transmitted 
symbols at instant k from two independent sources. Symbol 
duration is T, and f1 and f2 are the carrier frequencies of each 
n-PAM signal. It is supposed  f2 > f1 and  ∆f = f2 - f1 < 1/T  in 
order to have spectral overlapping between the transmitted 
signals. The pulse shaping filter is represented by g(t) and 
we suppose the pulse spectrum is a square root raised cosine 
with roll-off factor equals zero, i.e., g(t)=sinc(t/T)/T 1/2. 
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Fig. 1- Transmitter block diagram. 
 

The receiver block diagram is shown in Fig. 2. We 
assume perfect synchronization at receiver end. The 
function of low-pass filters (LPF) at mixer outputs is to 
eliminate the signal around 2f1, 2f2, and f1+f2. The filters g(t) 
are matched filters identical to the transmitter ones. The 
channel   is considered AWGN with bandwidth B=1/T+ ∆f. 
Thus, the noise n(t) at the receiver input is supposed to be 
white gaussian with power spectral density  N0/2 and zero 
mean.  

The demodulated and sampled signals d1(m) and d2(m), as 
indicated in Fig. 2, are the inputs of  a symbol detection 
system that deliver the estimate of transmitted symbols 
x1(m) and x2(m). 

The signal r(t) at receiver input is given by: 
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Fig. 2- Receiver structure. 

 
The signals d1(m) and d2(m) are the demodulated signals 

sampled at time t=mT and given by [3-4]: 
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where 2L+1 are the total number of significant terms of 
sequence  in k sinc[(1-T∆f)(m-k)] for each instant m, n1(m-L) 
and  n2(m-L) are individually white gaussian noise  with 
variance N0 and zero mean, and the cross-correlation 
between them is given by [2]: 
 
 E
 

(4) 
Notice by Eq. (4) that the random process n1(m) and  n2(m) 
are not jointly stationary.                                        

The time discrete model representing the system since 
transmission up to demodulation is shown at Fig. 3 [3-4]. 
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Fig. 3 – System Model. 
 

 
 

The filters h11(m), h21(m), h12(m), and h22(m) can be 
described in vectorial representation as following:  
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h11(m) = h22(m)= [ 0  0  ...  1  ... 0  0 ] (5) 

  
h12(m) = h21(m) =[ h0(m)  ...  hi(m)  ... h2L(m) ] (6) 

where each vector component hi(m), for i = 0,...,2L, is given 
by: 
 

hi(m) = (1-T∆f) sinc[(1-T∆f)(i-L)]cosπT∆f(2m+L-i). (7) 
 

We would like to remark that each demodulated signal, 
d1(m) and d2(m), contains the desired symbol plus gaussian 
noise and  2L+1 interference terms originated from another 
n-PAM signal. In fact, the interfering signal is equivalent to 
the output of a linear time variant FIR filter which has the 
second user symbol as its input. 
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III. OPTIMAL SYMBOL DETECTION 
If the symbol detection is performed directly from 

demodulated signals d1(m) or d2(m), utilizing  a simple 
decision circuit, e.g. a hard limiter, the symbol error rate 
should be very high due to the  2L+1 interference terms [3-
4]. The Fig. 4 shows the symbol error rate (SER) for binary 
PAM with frequency superposition (T∆f =1/3) and               
L = 1, 3, 5, compared to conventional PAM.    

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 - SER for overlapped 2-PAM system with 
superposition (T∆f =1/3) compared to conventional 2-PAM. 
 

In [4], the proposed detection techniques, based on 
maximum likelihood criteria individually applied to each 
sequence of demodulated symbol, although efficient, is not 
optimum because only half of available data sequences was 
used in the optimization process.  

In this work we present the maximum likelihood 
sequence estimator (MLSE) when both  sequences of 
demodulated signals {d1(m)} and {d2(m)} are jointly 
considered. Such strategy is globally optimum and 
minimizes the joint error probability of detection [5-6].  
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Let suppose that N  symbol sequences for each 
demodulated  signal d1(m) and d2(m), represented by vectors  
d1 = [ d1(1), d1(2),  ...  , d1(N) ]T and d2 = [ d2(1), d2(2),  ...  , 
d2(N) ]T, are observed by detection system. Since the 
processes n1(m) and  n2(m) are Gaussian, the conditional 
joint probability density function of  d1 and d2, supposing 
that x1 = [ x1(1-L), x1(2-L),  ...  , x1(N) ]T and                        
x2 = [ x2(1-2L), x2(2-2L),  ...  , x2(N) ]T  are known, can be 
written as [5] 
 
 

(8) 
 

where d=[d1(1), d1(2),  ...  ,d1(N), d2(1), d2(2),  ...  ,d2(N) ]T, 
µ= {µ1(1), µ1(2),  ...  , µ1(N), µ2(1), µ2(2),  ...  , µ2(N) ]T, 
being  µ1(m), µ2(m) the mean value of  d1(m) and d2(m), and 
C denotes the covariance matrix of vector d. It is easy to 
verify that the covariance matrix C is 2Nx2N square matrix 
with the following form: 
 

 
 

 
where I denotes the identity matrix with dimension N and 
the elements rij of matrix R (NxN) are given by 
 

rij = E[n1(i)n2(j)],    (9) 
 
which can be valued by Eq. (4). The components µ1(m), 
µ2(m) of mean vector are given by   
 
 

(10) 
 
 
where the coefficients hj(m) are given by Eq. (7). It is 
interesting to remark that although the coefficients hj(m) are 
time variant they are known at receiver when there is a 
perfect carrier and symbol synchronization. 
 The MLSE detector assigns the sequences {x1} and {x2} 
as the transmitted ones which maximize the probability 
density function defined by Eq. (8), or equivalently 
minimize the metric M expressed by 
 

(11) 
In order to compute the metric in Eq. (11), the MLSE 
detector should have, for binary PAM, 22N sequences to 
make the decision. Obviously the complexity of such 
detector is prohibitive in  practice. But it is very important 
to know the performance of MLSE detector for the present 
case of two non-orthogonal n-PAM signal with frequency 
overlapping because such performance represents a bench 
mark to the system. Next section presents some Monte Carlo 
simulation results of symbol error rate for the MLSE 
detector.  

IV. NUMERICAL RESULTS 
We have simulated a system with binary PAM signals, 

∆fT=1/3, and L=1. We adopt L=1 because the SER, like 

shown in Fig. 4, is almost the same for all values of L.  In 
this case, the filters for the equivalent model described in 
Fig. 3 are the following: 

 
h11(m) = h22(m) = [0 1 0] , 

 
h12(m)= h21(m)=[h0(m)  h1(m)  h2(m)], 

 
where 

h0(m)=0,2757cos[π(2m+1)/3], 
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h1(m)=0,6667cos[π(2m)/3], 
 

h2(m)=0,2757cos[π(2m-1)/3]. 
 

The block diagram of equivalent channel to demodulated 
signal  d1(m) is shown in Fig. 5. The channel structure to the 
signal  d2(m) is completely analogous to this one. 
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Fig. 5- Equivalent channel to signal d1(m). 
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It worth noting that the filter coefficients, h0(m), h1(m), and 
h3(m),  although time variant, are periodic with period 

, resulting in only three possible filters: 3=P
 

h12(0)= h21(0) =[ 0,1379    0,6667    0,1379], 
h12(1)= h21(1) =[-0,2757   -0,3333   0,1379], 
h12(2)= h21(2) =[ 0,1379   -0,3334   -0,2757]. 

 
   

).()( 1T µdCµd −−= −M In order to reduce the complexity and the computation 
time, the detector implemented in the simulation uses 
symbol sequences with  length N equal to 5. It is expected 
that a better performance should be reached if it was used 
sequences with larger length. Fig. 6 shows the symbol error 
rate (SER) at different values of symbol energy by noise 
density (Es/N0) for the MLSE detector scheme compared 
with the PAM without frequency superposition (∆fT = 1) 
and with the situation when the detection is performed 
directly from demodulated signal without interference 
cancellation (hard limiter). 
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Fig. 6 - SER for overlapped 2-PAM system, with T∆f =1/3, 
when detection is done by optimum detector, hard limiter 
and compared to conventional 2-PAM. 
 
The results shown in Fig. 6 clearly indicate the system with 
optimum detector has a very good performance. The  loss of 
performance compared to the PAM without frequency 
overlapping is less than  1.0 dB for SER=10-5. 
 Results comparing the performance of  MLSE detector 
with the techniques proposed in [3] and [4] are shown in  
Fig. 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7- Performance comparison of the optimum (MLSE) 
detector with alternative detection strategies  in overlapped 
(T∆f =1/3) 2-PAM system. 
 
 The very good performance of optimum detector, and the 
large difference of symbol error rate between the MLSE 
detector and the proposed techniques described in [3-4] 
suggest that may exist other suboptimum detection 
strategies with performance closer to the optimum.  

The presented results also suggest the possibility of  two 
signals sharing the same frequency band without high 
degradation in terms of performance.    

 

V. CONCLUSION AND PERSPECTIVES 
The detector based on joint ML criterion presents a very 

good performance and almost completely eliminates the 
effect of interference terms for the present communication 
system which employ two non-orthogonal n-PAM signal 
with frequency overlapping. Probably, the high efficiency of 
optimum detector for this case is explained by the well-
conditioned nature of interference.  

The large difference of symbol error rate between the 
MLSE detector and the proposed techniques described in 
literature [3-4] suggest that it must exist other suboptimum 
detection strategies with performance closer to the optimum. 
Such possibility is interesting because, due to the high 
complexity, the use of MLSE detector is prohibitive in 
practice. 

Investigation of new suboptimum detectors with low 
complexity and application to other modulation schemes are 
being considered in our research. 
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