Acceptance Testing Strategy Guided by Evolutionary Operational Profiles

Mattiello-Francisco, M. F.

National Institute for Space Research -INPE – CP 515
São José dos Campos, SP, Brazil
+55 12 39457124

fatima@dss.inpe.br

Ambrosio, A.M.

 National Institute for Space Research -INPE – CP 515
São José dos Campos, SP, Brazil
+55 12 39456586
ana@dss.inpe.br

Yano, E.

Aeronautical Institute of Technology - CTA
São José dos Campos, SP, Brazil
+55 12 39475891
yano@ita.br

Abstract

The effectiveness of test cases design and the time allocation to perform software testing are yet a dilemma. This article presents an acceptance test strategy addressing the problem of selecting effective test cases taking into account pressure imposed by project schedule. The original concept of operational profile was extended adding service concept and usage of architectural elements. The proposed evolutionary approach fits the needs of the different testers usually involved in the space mission integration stages. The strategy, based on the new approach, guides the test selection in the space mission embedded software acceptance process along which the software component is evolutionarily encapsulated. The strategy is illustrated in the acceptance of the satellite payload embedded software component supplied by a Brazilian software industry. This research is part of the Space Embedded Software Quality - QSEE project being carried on National Institute for Space Research – INPE.

1. Introduction

In the software development life cycle, testing is an activity that has a major impact on product quality attributes [20]. It is conduced at different phases of the development cycle (i.e. unit test, integration test, system test and user acceptance test) [12] and by several techniques such as structural, functional, state-based and fault-based [4].

At least 40% of the cost of developing well-engineered systems is taken up by testing [5]. Testing is a verification and validation technique which aims to reach confidence through the product operation by both identifying failures and removing fault in order to reduce the number or the severity of faults [5][3].

Test strategies are strongly dependent on the software product domain. In space mission’s development lifecycle, embedded software is considered a component to be integrated first with hardware and later with other satellite mission subsystems. Particularly, satellite payload embedded software is object of several integration stages as recommended by European Cooperation for Space Standardization (ECSS) [8][9] [10][11]. First the software operation will be checked at instrument level, after at satellite subsystem level and finally at satellite system level.
Space mission integration stages are required in order to qualify the flight equipment. Schedule constraints and test facilities are imposed for each stage. A set of artifacts such as simulators and test tools are used in order to support testing. They are referred as the environmental facilities related to the integration stage. The artifacts arrangement intends creating events and conditions that best represent the system real operation.

In addition, test sets shall be provided by testers and performed at each integration stage. Test cases are designed taking into account both the environmental facilities operation constraints and the expected behavior of the target systems during operation lifetime.
In space system application domain, service is a concept hugely used in mission operation. According to [11], a mission service is a set of spacecraft on-board functions that can be controlled and monitored through a well-defined set of requests and reports. Since satellite payload is the core instrument of the mission purpose, payload embedded software usually is engaged in many mission services, being the provider of several operations related to the service. Those services shall be verified on mission integration stages in order to demonstrate their conformance with the mission requirements.

Complying the time period allocated for acceptance testing in such a way that effective software validation can be performed is a challenge. A balance between the imposed timescale and test cases selection is required. In order to address this problem, the original concept of operational profile [17] [18] was extended to fit the needs of the different testers usually involved in the space mission integration stages.

On such base, the article proposes a solution to the problem of selecting, from a service-oriented test set, the services frequently used in the real system operation which best exercise relevant aspects of the target system. Additionally, architectural elements of the embedded software component involved in such services are addressed.

The article is organized as follows: the concepts related to space domain, concerning to satellite payload embedded software acceptance testing, are described in section 2. Section 3 introduces the approach of evolutionary operational profile contextualizing the concepts in a case study: a space software component that is going to be embedded into an X-ray instrument onboard of a Brazilian astronomy satellite mission. Section 4 addresses the test strategy specially proposed for guiding tests in the acceptance of space application embedded software. Related works are discussed in section 5. Finally, section 6 gives some remarks concluding the paper.

2. Space Software Acceptance Test

Producing a high quality software system is one of the challenges of software development, in particular whether the product is software embedded into critical reactive systems such as satellite payload instrument. Such instruments comprise high level of autonomy and remote operation [22].

According to ECSS space mission development lifecycle standard, a satellite payload instrument must be a qualified mission subsystem. This means that the software component embedded into instrument will be a unit under testing, at least, in three mission integration stages: 1) payload instrument - when the software is integrated with the payload hardware; 2) satellite platform subsystem - in which the communication between the payload instrument and the platform main computer is the testing target; and, finally 3) system integration - when the communication of the whole satellite with ground segment is validated.

The concept of testing mentioned above on mission integration stages concerns to the space system development lifecycle only and has no correspondence with software integration test on software development lifecycle. When the space mission integration stages start, the embedded software component was already delivered to the customer. Software integration tests and the software system tests are activities already finished by software supplier. During the mission integration stages the payload software will be an encapsulated component being validated in those mission integration stages. For this reason, from embedded software point of view, one can consider the test set to be applied on integration stages as part of the software acceptance process.

A software acceptance process is a formal testing conducted to determine whether or not a system satisfies its acceptance criteria and to enable the customer to determine whether or not to accept the system [7]. Acceptance criteria are usually based on the software problem reports resulting from verification and validation activities [6]. In our approach the acceptance criterion is based on the number of fault reveled by the services execution during each integration stage. This criterion is effective because space system operations are oriented to service user. According to ECSS a standard dedicated to space ground systems and operation, service user is an entity that initiates the service requests and receives the service reports. On-board embedded software is a component that collaborates on service provider by both executing services activities and being the destination of the service requests and the source of the service reports [11]. The operational usage of the set of on-board functions is always engaged in the services execution. Thus, in theory, operation problems can be anticipated performing service-oriented test cases during the acceptance testing.

In case of the acceptance process of space mission payload embedded software, the service users are the testers responsible to qualify the payload operation. Typically, three types of testers carry on the satellite mission integration stages: instrument engineer, satellite engineer and payload principal investigator.

Moreover, the acceptance process of a space software component can be understood as a set of activities performed by testers along the mission integration stages in order to validate the mission services in which the software component participates.

3. Evolutionary Operational Profile

Operational profile, as stated by Musa [18], is an external user-oriented test approach, which specifies the intended usage of the system in terms of operations and their occurrence probabilities. Test cases can be guided from the operational profile, supporting reliability analysis early in the test phase. Using an operational profile ensures that if testing is terminated and the software is shipped because of imperative schedule constraints, the most used operations will have received the most testing.

The evolutionary operational profiles approach aggregates to Musa’s original approach [18] the service operational profiles, which adds the concept of service and the usage of architectural elements of the system. The new approach aims at supporting a test strategy for embedded space software acceptance along the evolutionary integration stages. The term evolutionary denotes the growth in complexity and autonomy of the environment with which the embedded software interacts as far as the integration stages evolves.

Embedded software, being a reactive system, depends on external stimuli to operate. Its set of functionality does not change but the way the software component is remotely operated in fact does because, at each integration stage, the environmental facilities are incrementally substituted by the real subsystems. The subsystems with which the embedded software interacts for service providing are essentials on profiles development. At each integration stage, specificities of the environment facilities shall be taken into account on service profiles approach.

The participation of an on-board software component in a service also requires knowledge about its relationship with other components which collaborate on service execution in terms of requests and responses. In our case study, particular aspects of the environmental facilities used on the stages of instrument, satellite and segment are considered. For instance, at instrument integration stage all service requests are included in the test procedure and are performed with simulators which compose the environmental facilities, as illustrated in figure 1; whereas at satellite stage many of them will be autonomously performed by real satellite subsystems.
[image: image1.jpg]Operational profiles approach

Visualization

Figure 1 – Instrument integration stage
The functionalities provided by payload embedded software representing in figure 1 by circles are kept in all integration stage, the internal communication among them as well. But the service operations might change due to the test scripts evolution along the integration stages.

In this context, the services users are the testers who use the services for test purpose. They assess the software services on different point of views.
The main concept used in the development of evolutionary operational profile is service, which is the set of mission operations to be performed by the service provider in its operation life. A service provider can allow several services to exist simultaneously. Thus, a service profile is defined as the set of services to be performed by the service provider and their associated occurrence probabilities. One observes that a service behavior can be analyzed by the testers under different perspectives.
Concerning software operational modes, the development of evolutionary operational profiles follows Musa’s approach [17]. An operational mode profile is the probability of occurrence of each operational mode in system use. The software engineers establish those probabilities with expertise on the application domain. By definition, the sum of the occurrence probabilities of all operational modes is equal to one. A service might be provided by more than one software operational mode and its occurrence probabilities being different in each mode.

The evolutionary operational profile approach also considers system architectural elements in the development of the service operational profiles. Software operations and services are performed within operational modes and by architectural elements. One can identify categories of architectural elements in software architecture. Examples of categories are: components (or modules) and software external interfaces [16]. Given a category, one can attribute probabilities of usage of its elements in system operation lifetime as a whole. An architectural element profile is the probability of occurrence of each element in system operation. By definition the sum of the occurrence probabilities of all elements of a category is equal to one.

In short, the evolutionary operational profiles approach extends the original operational profile approach to guide space software acceptance testing based on the following five steps: (a) list the services and their occurrence probabilities; (b) define the operational modes profile; (c) identify relevant architectural elements and their usage probabilities; (d) establish the relationship between each architectural element and the services listed in (a); (e) calculate the service operational profiles.

The steps are described and illustrated in details in next sections with the satellite payload software component (SWPDC) that will be embedded into an X-ray instrument onboard of MIRAX astronomy satellite mission [20]. The software component (SWPDC) was supplied by a Brazilian Software Industry and validated by INPE in the context of the Quality of Space Application Embedded Software (QSEE) research project [21]. The external interfaces of SWPDC are the satellite on board data handling computer (OBDH) and the payload X-ray cameras represented by the Event Packet Simulator, both in figure 1.
3.1 Testers
Testers are the service users in evolutionary operational profiles approach. In case of the testers involved in the integration stages of SWPDC payload software component, one can say that their testing interests are respectively: (i) instrument engineer concerns with data acquisition and data package performance (ii) satellite engineer focus on the entire mission operation. Neither the payload data acquisition nor details of the instrument assembling in which the software is embedded are relevant to him/her. He/ she concerns with the ground and space segment communication in order to assure no corruption in telecommand transmission to and telemetry reception from the satellite, (iii) payload principal investigator concerns with the sensors constraints and accuracy as well as vulnerability of the instrument operation faced to space environmental conditions.

Each tester is responsible to both design test cases and specify test criteria to assess the system in each integration stage. Test techniques are properly used in order to provide the test set. Although the choice of test design techniques is definitely essential for effective test cases generation, this subject will be not addressed in this article.
3.2 Operational Modes

Critical reactive systems like space application embedded software have their operations systematized in operational modes. The reason for such systematization takes into account basically two issues: (i) the high interaction with hardware components which imposes synchronism constraints, and (ii) the safety requirements [22].

An operational mode is a distinct pattern of system use and/or set of environmental conditions needing test because it is likely to stimulate different failures [17]. According to ECSS [10], operational modes are combination of operational configurations or conditions that can occur during the service execution for equipment or spacecraft.

 In our case study, operational modes correspond to the distinct patterns in which the software deals with controlled events in order to perform partial sets of functions. SWPDC requirements are fully specified on the bases of four operational modes and their occurrence probabilities presented in Table 1. The operational mode profiles were established as the proportion of each mode execution expected in the entire system lifetime operation.
Table 1 - SWPDC operational mode profiles
[image: image2.jpg]T e ——.

Occurrence Probabilities on
SERVICES Modes Components External
Usage Usage Interfaces Usage)|
Scientific Data 0.39 0.15 0.18
Test Data 0.03 0.25 0.2
Memory Dump 0.14 0.35 0.06
Housekeeping 0.44 0.15 0.2
Occurrence
SWPDC Modes Probability
INITIATE (1) 0.001
SAFETY (2) 0.02
INOMINAL (3) 0.9
IDIAGNOSE (4) 0.079

3.3 Architectural Elements

Architectural element profile enriches the evolutionary approach because one can map the elements usage into particular tester purpose. At each integration stage, both the environmental facilities change and testers need different observation points in order to validate the software behavior. For instance, the instrument engineer has high interest in observing the external interfaces behavior of the payload embedded software during the instrument integration stage.
Examples of relevant software architectural elements related to SWPDC are illustrated in figure 2. The SWPDC software architecture comprises five components: (A) Communication; (B) State (C) Command; (D) Data and (E) Support. Also, three external interfaces are considered: the communication protocol with X-ray cameras (EPP); the communication protocol with satellite On Board Data Handling (OBDH); and the instrument temperature channels (Temp). In figure 2 they are highlighted on dashed rectangles.
Once the architectural elements are highlighted, the evolutionary approach recommends estimating occurrence probabilities to them. This step depends on high knowledge of the application and historical data from previous experience in similar projects. As an example from our case study, the occurrence probabilities associated to the SWPDC components and external interfaces are presented in table 2. Experience on similar space software applications enabled to identify relevance of such architectural elements for instrument integration stage.

Table 2 – SWPDC architectural elements profile
[image: image3.jpg]Payload Software (SWPDC)
on board of X- Ray
astronomy satellite mission

http://www.cea.inpe.br/~qsee/

[Components Occurrence
Probability
Communication (8)] 04
State (B) 0.2
Command (C) 0.2
Data (D) 0.1
Support_(E) 0.1

[External Occurrence
Interfaces | Probability
EPP 0.4
OBDH 0.2
TEMP 0.05
Others 0.35

3.4 Service Profiles

In space domain applications, as presented in section 2, the operation concept of embedded software is based on services.
In satellite mission operation, services are provided by the on-board embedded software combining autonomous tasks with command requests received from other on-board subsystems, such as OBDH computer, which under remote control from ground executes mission flight plan.

[image: image4.jpg]B A i

1 I SWPDC
| 12t i OBTEVPacAG) State
1 c
1 ! ®
- zo8pn

\LT: emdoBoH

T 6 : ok := wrfRgaCmdModOpe(cmd.tipo)

T 3 [CmdReaRspImeQ] : rspOBDH 2(ere] : rotficar(evter)

Communication notificar(execmd)
—

+ obterComanda(cmd, size)
5 obterComando()

11 : enviarResposta(rsp, size)
-~

lAE + adicionar(tip, evPack, size)

@

9 fmtMsoRsp()
-~

19 5 15pEPP(evP me

10 obtBURSP(rs, size)
-

Data

lxa + emdEPP(tip)

Figure 2 – SWPDC architectural elements

Given the importance of the service abstraction and its relation to the operation on the tester’s point of view, the development of service profile starts with a list of the services provided by the software component. For instance, in our case study some services provided by SWPDC are: (S1) Scientific Data; (S2) Test data; (S3) Memory Dump; (S4) Housekeeping.
In order to calculate services profiles, as stated at beginning of this session, the steps (b) and (c) should be followed. Once the operational modes profiles are defined and relevant architectural elements with their usage probabilities are identified, step (d) establishes their relationship with the services listed. By generalization, we assume that a mode can be considered also an element. In the text below we use the word element to refer to both architectural elements and operational modes.
To accomplish step (d), services usage matrix are constructed indicating which services use which elements. Each matrix cell aij is a binary variable indicating the presence of the element in the service execution. Table 3 illustrates the usage matrix for the four SWPDC services.
In the Modes column, the cell aij = 0 means that service is not allowed to be activated in such particular operational mode. In the Components and Ext.Interfaces columns, the cell aij = 0 means that the component or the interface is not used in the corresponding service. Cells aij = 1 represents that element is being considered.
Table 3 – SWPDC Services Usage Matrix
[image: image5.jpg]Modes Components Ext. Interfaces
SERVICES [2] @) | @ [(A) [(B) | (C) | (E) |EPP|[OBDH |Temp.
Element Profile | 0.02 09 |0079| 0.4 |02 | 0.2 | 0.1 |0.4| 0.2 | 0.05
Scientific Data 0 1 0 1 0 1 0 1 1 0
| Test Data 1 0 1 1 0 1 1 53 3 1
Memory Dump 0 1 1 1 1 1 0 0 1 %
Housekeeping 1 1 1 1 0 1 0 1 1 1
Modes Components Ext. Interfaces
SERVICES [@] @) | @ [(A) [(B)]| (C) | (E) |EPP|OBDH |Temp.
0.02 09 [0.079| 0.4 0.2 0.2 0.1 |04 0.2 0.05
[Scientific Data 5] 3 0 1 0 1 0 1 1 0
| Test Data 2 0 1 1 0 1 1 1 1 1
Memory Dump 0 1 1 1 1 1 0 0 1 [
Housekeeping c 3 3 1 0 1 0 1 1 1

The binary usage matrix indicates the relative usage of the architectural element. It does not indicate a profile in the sense that element usage is not disjoint; occurrence probabilities do not necessarily add up to one.

Moreover, it is possible that some elements of one category do not participate in a given service. One can observe that the development of service profiles can be done considering sub-sets of the architectural elements.
 Because in the system operation routine, elements do not have equal degree of participation in the services, the usage matrix allows mapping those differences as criticality information. Weights (wij > 0) are attributed according to the criticality of the element for the service. The weight maps the degree of usage intensity and/or criticality of the element for such service providing.
A service profile is defined as the occurrence probability of each service in terms of using a particular architectural element. A service profile is calculated according to the following formula:

[image: image6.jpg]| SERVICES x Mode — Component — Interface MATRIX]

Modes Components Ext. Interfaces
SERVICES @) ®3) | & [OEFOIRCREG) EPP | OBDH |Temp.
002 09 |0079|0,4 (02 02 | 01 0.4 02 | 005
Scientific Data 0 3 0 1 0 1 0 1 1 0
Test Data 2 0 1 1 0 1 1 1 1 1
Memory Dump 0 1 1 1 1 1 0 0 1 1
1 0 1 0 1 1 1
Housekeeping 3 3 3

Weight Wy represents the degree of intensity
which the services occur within an operation mode.
Let gj and pi be respectively the service and mode

ij s
occurrence_probab|l|ty. q; = .Z ay (W . €
where a isthe T W
i

1

where, qj results occurrence probability of the element being used on the corresponding service. The evaluation takes into account the matrix of the usage intensity of the elements where, ei represents the element profile of such elements and aij is the binary variable indicating whether the element i participates in the service j. And weight wij represents the degree of usage intensity and/or criticality of the element i on such service j .
 Considering that in nominal mode, Mode (3) in table 3, the services Scientific Data and Housekeeping are intensive whereas Memory Dump almost never occurs, the weigh for them should be different. In our case study we attributed weight 3 for the first two and weight 1 for Memory Dump. Table 4 shows those values.
Table 4 – Mode Usage Intensity Matrix

[image: image7.jpg]Modes Components Ext. Interfaces
SERVICES [2] @) | @ [(A) [(B) | (C) | (E) |EPP|[OBDH |Temp.

Element Profile | 0.02 09 |0079| 0.4 |02 | 0.2 | 0.1 |0.4| 0.2 | 0.05
Scientific Data 0 1 0 1 0 1 0 1 1 0

| Test Data 1 0 1 1 0 1 1 % 1 1
Memory Dump 0 1 1 1 1 1 0 0 % %
Housekeeping 1 1 1 1 0 1 0 il 1 1

Modes
ISERVICES @) 3) “@
0.02 0.9 |0.079

Scientific Data 0] 0

| Test Data 2 0 1

[Memory Dump 0 1 1

Housekeeping 3 3 3

Therefore, the services profiles in our case study are calculated in terms of system mode usage, component usage and software external interfaces usage, and presented in Table 5.

A brief analysis of the services profiles showed in Table 5 demonstrates that Housekeeping service allows validating more the external interfaces than a Memory Dump service does. Thus, if the tester goal is to validate the communication protocol performance [14], the service profile guides to select test cases from Housekeeping and Test Data services, giving less priority to the test cases from the Memory Dump service. On the other hand, the participation of the architectural components in both Housekeeping and Scientific Data services is lower than in Memory Dump service. The results demonstrate great coherence. Actually Memory Dump is a high complex service which involves different components collaboration although it is not frequent in real operation.

Table 5 - Services Profiles
[image: image8.jpg]Occurrence Probabilities on
SERVICES Modes | Components | External
Usage Usage Interfaces
Usage
Scientific Data 0.39 0.15 0.18
Test Data 0.03 0.25 0.2
Memory Durmp 0.14 0.35 0.06
Housekeeping 0.44 0.15 0.2

On the ofher hand,
housckeeping and scientific data
services involve less
architectural components

The sequence of operations that
execute housekeeping service allows to
validate more the external interfaces
than a memory dump service does.

4. Test Strategy

The schedule for each mission integration stage, according to ECSS, is previously established in the space mission system development planning. Test cases comprising feature, load and regression test shall be performed in software acceptance testing. As stated in [6], when project manager is put under budget and schedule pressure, it is normal that the effort allocated to testing is the first to be reduced.

Therefore, frequently there is no enough time for executing in totality the test sets provided by all testers involved in the integration stages. Thus, the question relies on how to select effective test cases from the available test set taking into account the testing schedule constraints.

The test strategy proposed in this work applies the evolutionary operational approach to guide the test selection in order to match the previous total time (T) allocated for U testers during each integration stage. The strategy is based on the set of services (S) and the set of relevant elements (E) involved in each stage. Additionally, the following two assumptions are assumed:

· There is an available test set per tester related to each service (Csu) with known test cases quantity (Ntc);

· The estimated average time for performing one test case (Ttc) is both constant and known. Such value comprises the time needed for performing test case procedures, including the analysis of the test report.

Using a service profile (Pse), the proposed test strategy selects the test cases from Csu that highlighted the usage of such relevant element for the integration stage. The test cases are selected on the basis of function F (S,U,E), as illustrated in figure 3.
There is a procedure which maximizes Pse in order to select a subset with Ns test cases, where Ns ≤ Ntc. The computation takes into account T and Ttc.

Considering that T has to be shared by all U testers, the test strategy allows to compute a percentage of time being allocated to each tester.

[image: image9.jpg]Pse
u1

uz2 i
p—
Csu /Un
F (S3,U2,E2)

s1

Sm

Figure 3 – Test case selection process
Given a set of elements G of a matrix F (S, U, E), there is a function f є F (all f) and f є G in such way that selected f being maximized by
Gain = Max (∑ Pse)

f є G

Restricted to (∑ [Csu x Ttc] =< T

f є G
The test technique used to design and generate the test set is not addressed in this article, although being supplementary subject of this ongoing research. This test strategy requires only the number of test cases per service per integration stage being provided by each tester.
5. Related Work

Operational profile is an approach with large applicability in software reliability because it provides a quantitative description of how a system is or will be used. Developing an operational profile focuses attention on how users employ the product and the relative importance of the different uses. This will guide engineers in intelligently allocating development and test resources [19]. Focusing on guiding test, operational profiles approach has been used for acceptance tests by Leung and Wong [13]. They defined a user acceptance test strategy, called operation-based testing which combines operational profile for testing purpose and ISO9001 standards for test requirements. In the proposed test strategy they addressed test planning but there is no concern about testing duration time. Neither, how test cases set can be select under schedule constraints, although the test selection is based on operation criticality.
The software acceptance testing problem domain was also addressed in ASTERIX project [6] focusing the testing effort on the use of automated techniques. Facing the frequent budget reduction and schedule pressure, many European software development organizations stated that testing is always the weakest link in the practical application of the ESA Software Engineering standards [9] [11]. Often significant amount of development work has been performed before sufficient attention is given to the manner in which the software will be both used and tested.

Concerning criticality Musa discusses in [18] that operations can be classified by criticality. One way to handle criticality is use an operational profile weighted by criticality to drive test planning and execution. But he discourages its usage because you do not obtain a true reliability estimate. One can observe that we do not associate criticality to the operation but to both operational modes and architectural elements.

In our approach test techniques as a whole is not addressed, although being supplementary subject of this ongoing research. Test techniques supporting test design and automatic test case generation based on specification model shall be incorporated to the test strategy. There is no doubts they significantly contribute to test effectiveness improvement [1] [2] [12] [15].

6. Conclusion

This article presented a software acceptance test strategy for space embedded software. The proposed test strategy addresses the problem of selecting effective test cases taking into account testing time constraints.

The strategy is based on an extension of the operational profile approach originally proposed by Musa. Such extension introduces the concept of evolutionary operational profiles in order to deal with testers needs concerning software architectural aspects in different integration stages. Integration stages are frequently followed in the space mission qualification process for flight therefore they can be used for the software acceptance testing. Along the software acceptance process the software component is evolutionarily encapsulated, being part of the instrument, subsystem and system integrations. The operation of the software component should be checked with the different environment facilities provided in each stage.
Due to service concept being largely used in space mission operation, we aggregated it to the evolutionary operational profile approach. One advantage of such approach is to anticipate embedded software operation making use of the time allocated to mission integration stages.

The evolutionary approach has been applied in the deployment of the software acceptance testing process at Brazilian Institute for Space Research. The goal is to support the acceptance of satellite payload embedded software component supplied by Brazilian software industry. The approach has demonstrated contributing to meet a desired level of confidence on the space mission operation. It ensures that customer’s requirements objectives are met and that all components are correctly included in a customer package.

 Although the approach was conceived in the context of space domain, it may be applied to other software application domain which deals with the challenge of testing a software component incrementally encapsulating in several times.

The proposed test strategy is actually being evaluated in real space embedded software, SWPDC component, at instrument integration stage. The potential of supporting software failure intensity measurements along each integration stage is one research issue to be explored further.

7. Acknowledgement

Authors would like to thank Dr. Eliane Martins for the fruitful ideas and also the Finnanciadora Brasileira de Estudos e Projetos (FNEP) for partially supporting this work through QSEE project.
8. References

[1] Ambrosio, A.M.; Martins, E.; Vijaykumar, N. L.; Carvalho, S.V. Systematic Generation of Test and Fault Cases for Space Application Validation. In.: Data System In Aerospace, 9. (DASIA), 30 mai – 2 jun 2005, Edinburgh, Scotland. Proceedings… Noordwijk: ESA Publications, 2005

[2] Ambrosio, A.M.; Martins E.; Mattiello-Franscisco, M.F. Vijaykumar N. L.; Santiago, V.; Carvalho, S.V. A Methodology for Designing Fault Injection Experiments as an Addition to Communication Systems Conformance Testing. In: Workshop on Dependable Software - Tools and Methods, 1. (DSN), 28 jun – 1 jul 2005, Yokohama, Japan. Proceedings... Tóquio: IEEE, 2005

[3] Avizienis A., Laprie J.C., Randell B, Landwehr C., “Basic Concepts and taxonomy of Dependable and Secure Computing”, IEEE Transactions on Dependable and Secure Computing, 2004, 1(1), pp 11-33

[4] Beizer, B., Software Testing Techniques, 2nd Edition, Van Nostrand Reinhold,1990.

[5] Bass. L., P. Clements, R. Kazman, Software Architecture in Practice-critical, Second Edition, Addison Wesley, SEI series in Software Engineering, 2003.

[6] Brinkworth, J., Llewhellyn, J., “ASTERIX Introduction of a Process Improvement using tools to support system, testing Software Quality Journal, v.7, p. 85-95, 1998

[7] IEEE Guide for Software Verification and Validation Plans - IEEE-Std1059-1993
[8] European Cooperation for Space Standardization (ECSS). Standards. Noordwijk: ESA publication Division. Available in: <http://www.ecss.nl/>. Date: 2 jun. 2003a

[9] European Cooperation for Space Standardization (ECSS). ECSS-E-40 Part 1B Space Engineering – Software - Principles and requirements , November 2003

[10] European Cooperation for Space Standardization (ECSS). ECSS-M-30A Space Project Management- Project Phasing and Planning, April 1996.

[11] European Cooperation for Space Standardization (ECSS). ECSS-E-70-41A – Ground systems and operations: telemetry and telecommand Packet utilization. January, 2003b. Noordwijk: ESA publication Division. Available in: <http://www.ecss.nl/>. Date: 2 jun. 2003.

[12] Hetzel, B., The Complete Guide to Software Testing, 2nd Edition, Wiley-QED, 1988.

[13] Leung, H. and Wong, P. “A study of user acceptance tests”, Software Quality Journal, vol.6 (1997), pp. 137-149.

[14] Lai, R. A survey of communication protocol testing. The Journal of Systems and Software 62, 2002, 21-46.

[15] Martins, E.; Sabião, S.B.; Ambrosio, A. M. ConData: a tool for automating specification-based test case generation for communication systems. Software Quality Journal, v.8, n. 4, p. 303-319, 1999.

[16] Mattiello-Francisco, M.F. An Evolutionary Operational Profiles Approach for Integration Tests – Supplement Proceedings of the 2006 International Conference on Dependable Systems and Networks – DSN 2006 – 25 - 28 June 2006 – Philadelphia, PA, USA, pp 210.

[17] Musa, J.D., Software Reliability Engineering, First Edition, McGraw-Hill, 1998.

[18] Musa, J.D., “Operational Profiles in Software Reliability Engineering”, IEEE Software, March 1993, pp. 14-32.

[19] Musa, J.D., Iannino, A., Okumoto, K. Software Reliability: Professional Edition, McGraw-Hill, 1990.

[20] Projeto MIRAX – Monitor e Imageador de Raios X. INPE.<http://www.cea.inpe.br/cea/satelites/mirax/miraxproject.htm>. Outubro de 2006.

[21] Projeto QSEE Qualidade do Software Embarcado e aplicações espaciais http://www.cea.inpe.br/qsee, funded by FINEP, April 2007.

[22] Storey, Neil Safety-critical computer Systems, First Edition, Addison Wesley Longman Limited, England, 1996

PAGE

