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Abstract

Remote sensing has the potential of improving our ability to map and monitor pasture degradation. Pasture degradation is one of the most
important problems in the Amazon, yet the manner in which grazing intensity, edaphic conditions and land‐use age impact pasture biophysical
properties, and our ability to monitor them using remote sensing is poorly known. We evaluate the connection between field grass biophysical
measures and remote sensing, and investigate the impact of grazing intensity on pasture biophysical measures in Rondônia, in the Brazilian
Amazon. Above ground biomass, canopy water content and height were measured in different pasture sites during the dry season. Using Landsat
Thematic Mapper (TM) data, four spectral vegetation indices and fractions derived from spectral mixture analysis, i.e., Non‐Photosynthetic
Vegetation (NPV), Green Vegetation (GV), Soil, Shade, and NPV+Soil, were calculated and compared to field grass measures. For grazed
pastures under dry conditions, the Normalized Difference Infrared Index (NDII5 and NDII7), had higher correlations with the biophysical
measures than the Normalized Difference Vegetation Index (NDVI) and the Soil‐Adjusted Vegetation Index (SAVI). NPV had the highest
correlations with all field measures, suggesting this fraction is a good indicator of pasture characteristics in Rondônia. Pasture height was
correlated to the Shade fraction. A conceptual model was built for pasture biophysical change using three fractions, i.e., NPV, Shade and GV to
characterize possible pasture degradation processes in Rondônia. Based upon field measures, grazing intensity had the most significant impact on
pasture biophysical properties compared to soil order and land‐use age. The impact of grazing on pastures in the dry season could be potentially
measured by using remotely sensed measures such as NPV.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Managed pastures have been the most important form of
land use in the Amazon since early colonization and continue
to expand in the region. Many of these areas become
degraded after only a few years (Fearnside and Barbosa,
1998). However, quantitative measures of pasture condition
and their change in space and time due to pasture de-

gradation have not been reported in the Amazon and our
knowledge about the characteristics of grazed pastures is
very limited.

Pasture nutritional conditions and changes in soil and plant
(grass) vary according to soil order and pasture age (Asner et
al., 2004; Numata et al., 2007). In addition to pasture
nutritional quality, pasture degradation refers to the reduction
of pasture productivity, which is directly determined by a
change in pasture biophysical properties such as biomass, leaf
area index (LAI), grass density, and canopy height. These
measures are a consequence of complex interactions among
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pasture management practices, pasture age, edaphic conditions,
and climate (Dias Filho et al., 2000; Serrão & Toledo, 1990).
Of these factors, grazing intensity may have the most direct
and rapid impact on standing biomass, LAI and vegetation
cover in the short term (Lupinacci, 2002; Mwendera et al.,
1997).

Animal stocking rates in the Amazonian pastures are usually
above the recommended level in order to maximize short term
profit (Costa & Rehman, 2005; Fearnside, 1996). As a result,
overgrazing causes excess defoliation and grass nutrient loss,
resulting in reduced animal production and pasture degradation
(Lupinacci, 2002; Boddey et al., 2004). Although the primary
effects of grazing intensity on pastures are known, the impacts
of grazing intensity have not been quantitatively measured and
their importance compared to other factors such as soil order, is
not clear.

Remote sensing provides temporal and spatial patterns of
ecosystem change and has been used to estimate biophysical
characteristics of managed grasslands. In the Amazon,
remote sensing has been used primarily to estimate
deforestation rates and monitor land‐cover change (Alves et
al., 1999; Moran, 1993; Roberts et al., 2002; Skole &
Tucker, 1993). However, our understanding of the utility of
remote sensing for Amazonian pastures is limited and the
accuracy and physical meaning of indices derived from
remote sensing should be evaluated. Recently, Asner et al.
(2004) studied the linkage between pasture biochemical and
physical data and remotely derived measures, and found that
pasture characteristics measured by Landsat Enhanced
Thematic Mapper (ETM+) varied according to soil orders
and pasture age. Field pasture LAI and non‐photosynthetic
material area index (NPAI) were well correlated with
remotely sensed indices such as Photosynthetic Vegetation
(PV) and Non‐photosynthetic vegetation (NPV). Despite
these results, some points in Amazonian pasture character-
ization using remote sensing remain unclear. For example,
we do not know the relative importance of pasture age,
grazing intensity, and nutrient availability on pasture canopy
properties and remotely sensed signatures. We therefore need
to expand our understanding of the inter‐relationships
between these land‐use, edaphic, and biogeochemical con-
trols. Here, we investigate the potential of remotely sensed
data for pasture characterization and for estimating grass
biophysical properties.

Our primary objective was to evaluate the biophysical
connections between grazing intensity, pasture age and
remotely sensed indices derived from Landsat TM imagery.
The specific goals are to: 1) investigate the impacts of grazing
intensity on pasture biophysical properties; 2) analyze relation-
ships between pasture field data such as biomass, water and
canopy height and remotely sensed data. After determining
appropriate remote sensing measures for pasture characteriza-
tion, a conceptual model will be constructed based upon this
analysis. Finally, 3) to analyze the effects of grazing intensity on
related remotely sensed data, addressing the question of
sensitivity of remote sensing to pasture biophysical changes
due to grazing intensity.

2. Methodology

2.1. Study site

The state of Rondônia is located in the southwestern
Brazilian Amazon, occupying an area between 8 and 15° S
and 60 to 65° W (Fig. 1). Six ranches were used for this study,
distributed in Porto Velho, Ariquemes, Ouro Preto, and
Presidente Médici. These ranches are beef pastures (extensive
management system). Soil orders are related to geology and
topography of this region. Oxisols and Ultisols, both dystrophic
soils, are found mostly over the Precambrian granitoid and
meta‐supracrustal rocks with predominantly flat topography in
the north of the state, while Alfisols are distributed mainly in
central of Rondônia to the south, where they coincide with the
presence of intrusive basic and ultrabasic rocks with gently
rolling topography (CPRM,1997; EMBRAPA, 1983; Holmes et
al., 2004).

2.1.1. Field measurements: grass biophysical properties and
soils

Field measurements of grass biophysical properties were
conducted in July–August, 2003. Pasture field measurements
including biomass, grass water content and canopy height were
obtained from study sites that consisted of the same grass
species, Brachiaria brizantha. Besides grass species, some
weed species and burned forest debris were found especially in
young pastures (6–10 years old). However, due to periodic
burning and other management practices for weed control
employed by ranch owners, the amount of residual woody
plants and successional plant cover decline as pastures age.
Within each study site, the above measurements were taken
from a 100 m transect placed on areas with different pasture
ages, if more than one age class was present. In total, sixteen
transects were used for field measurements of grass biophysical
properties in this study. Grass aboveground biomass was
clipped from a 50 cm × 50 cm quadrant at 20 m intervals along
each 100 m transect gathering six biomass samples per transect.
Grass biomass was weighed then oven dried at 70 °C for 36 h.
Dried grass biomass was reweighed in order to calculate grass
water content. Canopy height was measured at 5 m intervals
along the same transects.

Pasture management information was obtained through
interviews with ranch owners. Grazing intensity in this study
refers exclusively to stocking rate (number of animals per 1 ha).
For the dry season in Rondônia, the recommended stocking rate
is 1 Animal Unit (450 kg)/ha or 1.2 head/ha (F. C. Leonidas,
personal communication). With respect to grazing rotation, the
recommended fallow period for pasture after grazing is 20–
30 days in Rondônia, but the fallow periods for our study sites
varied from 5 to15 days, which is much shorter than is
recommended. Although we have information on grazing
rotation period for each site at the time of the field survey, the
timing of grazing (when cattle come into the area and leave) was
not known. Therefore, the impacts of grazing rotation on
pasture biophysical changes are not clear in this study. It is
assumed, based upon interviews with ranch owners and field
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measurements, that grazing rotation period in the dry season is
positively correlated with stocking rate: the higher the stocking
rate, the more biomass will be consumed and the more quickly
the rotation will be imposed.

There was no rainfall recorded during the field work and at
least three weeks prior to the imagery acquisition dates
(SEDAM, 2004). Therefore, the effects of rainfall on field
measurements of grass biophysical properties and remotely
sensed data were neglected in this study. And the effects of soil
moisture on remotely sensed data are likely to be negligible too.
Soil sampling was conducted in May and July–August in 2003.
Soil samples were collected from 0–30 cm in the areas close to
each transect. Soil chemical measures such as pH, soil available
P, and Base saturation were measured according to the tech-
niques described in EMBRAPA (1997). Soil reaction (pH) was
measured using a standard calomel electrode pH meter. The
Melich extractor was used to extract available P and exchange-
able K. This extraction procedure utilizes 0.025 N of H2SO4, and
0.05 N of HCl to remove labile forms of these nutrients.
Phosphorus was determined using spectrophotometry by the
method Molybdate Blue while exchangeable K was determined

by flame photometry. Exchangeable Ca and Mg were extracted
with 1 N KCl, and quantified by titration with EDTA. Ex-
changeable Al was extracted with 1 N KCl and quantified by
titration with 0.025 N NaOH. Base saturation was calculated as:

Base saturation
¼ 100 S=cation exchange capacity ðCECÞ ð1Þ

where S=Ca+Mg+K and CEC=S+H+Al.

2.1.2. Statistical analysis
To analyze the impact of the variables including soil, land‐

use age and grazing intensity on biophysical data, one‐way
analysis of variance (ANOVA) was performed. For the purpose
of ANOVA, grazing intensity was divided into three classes
based on stocking rate: “high” (> 1.7 head/ha), “medium” (1.2–
1.6 head/ha), and low (< 1.1 head/ha). The other variables,
soil and age, were also divided into three classes: Soil
orders, Alfisols, Ultisols and Oxisols, and three age classes,
Young (6–10 years old), Intermediate (11–15 years old) and
Old (> 16 years old).

Fig. 1. Study area showing study sites distributed from Porto Velho to Presidente Médici.
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2.1.3. Remote sensing data and preprocessing
Three Landsat Thematic Mapper 5 (TM5) scenes were used

in this study: 231/67, 231/68 (07/24/2003), and 232/66 (07/15/
2003) (Table 1). Landsat TM5 is a spaceborne multi‐spectral
sensor that has six spectral bands between 0.45 and 2.22 μm
(three visible bands, one near‐infrared, and two short wave-
length infrared bands). The ground instantaneous field‐of‐view
is 30 m. The Landsat series, starting with the Multispectral
Scanner (MSS) launched in 1972 and progressing to Landsat
Enhanced Thematic Mapper (ETM+), are the most common
remote sensing data used for monitoring Amazonian tropical
rain forest since the 1970s.

Images were coregistered to the digital base maps provided
by Instituto Nacional de Pesquisas Espaciais (INPE — the
Brazilian Space Agency). Landsat TM images were inter‐
calibrated to the corresponding Landsat ETM+ reflectance
images using a relative radiometric calibration approach
(Roberts et al., 1998a). Invariant targets such as primary
forest, second growth forest, bare soil, rock, and water were
selected for a pair of reflectance and uncalibrated images. A
linear equation was estimated using the pixel mean values
extracted from a 4 by 4 pixel area of the invariant targets for
each band. These coefficients normalize the uncalibrated
images to the corresponding reference reflectance image.
Three corresponding Landsat ETM+ images, i.e., 08/11/2001
for 231/67 and 231/68, and 08/01/2001 for 232/66, were
radiometrically corrected using the gains and offset provided
in the image metafile. Next, an atmospheric correction was
performed using software Atmospheric Correction Now 3.0
(ACORN — Imspec, 2003). The tropical model was used for
reflectance retrieval. Water vapor was fixed at 35 mm for all
three images and image atmospheric visibility was set at
35 km for the 231/67 and 231/68 scenes, and 45 km for the
232/66 scene.

2.1.4. Image analysis
Grass biomass, water content and canopy height were

measured from 16 transects and compared to Landsat data. Two
types of spectral measures were derived from the imagery: 1)
Spectral vegetation indices (VIs) based upon two spectral bands
and 2) Spectral Mixture Analysis (SMA).

Four VIs were calculated in this study (Table 2). The first
two VIs are the Normalized Difference Vegetation Index
(NDVI) and Soil‐Adjusted Vegetation Index (SAVI) (Huete,
1988). SAVI better accounts for the effects of variable soil
brightness than NDVI. The Normalized Difference Infrared
Indices (NDII5 and NDII7) use the bands from the short
wavelength infrared (SWIR) region (band 5 — SWIR1 and
band 7 — SWIR2, respectively) in place of band 4. These

indices are more sensitive to water content (Hardisky et al.,
1983; Hill, 2004; Hunt and Rock, 1989).

SMA provides physically meaningful measures of the
percentage of the major components within the instantaneous
field‐of‐view, facilitating our interpretation (Adams et al., 1993;
Roberts et al., 1993; Settle & Drake, 1993). SMA assumes that
the spectra can be modeled as a linear combination of two or
more “pure” spectral endmembers (Adams et al., 1993):

qk ¼
XN
i¼1

fi⁎qik þ ek ð2Þ

where ρiλ is the reflectance of endmember i for a specific band
(λ), fi is the fraction of the endmember, N is the number of
endmembers and ελ is the residual error. The sum of the
modeled fractions is constrained to 1.

A root mean squared error (RMSE) is calculated for each
pixel of the scene to assess model fit (Adams et al., 1993):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM
k¼1

ekð Þ2

M

vuuut
ð3Þ

whereM is the number of bands. SMA typically assumes single
interactions between photons and surfaces, producing linear
mixing of the surface fractions and their reflectance. In this
study, a 4‐endmember model was used including: NPV, GV,
Soil, and Shade.

For SMA, a spectral library for NPV, GV, and Soil was
built. The library consisted mostly of image endmembers,
which were collected from Landsat reflectance images, but
some spectra from the field spectrometer were included in the
library as well. Field grass spectra were measured using an
Analytical Spectral Device (ASD) — full range spectrometer
(350 to 2500 nm, Boulder, CO), on loan from the Jet
Propulsion Laboratory (JPL). The ASD measurements were
conducted for all study sites. The ASD spectra were collected
with a 22° field‐of‐view (FOV) at 5 m intervals along 100 m
transect with a 1 m sensor height above grass canopies. All
spectral measurements were collected within 2 h of local solar
noon under clear‐sky conditions. Five replicates were
measured for each grass canopy. These spectra were
standardized to Spectralon (Labsphere, Inc, North Sutton,
NH) measured at approximately 10 min intervals, and
converted into reflectance. The spectra from the field

Table 1
Landsat data used in this study

Path/row City Landsat TM ETM reference

P232/R66 Porto Velho 2003–07–15 2001–08–01
P231/R67 Ji‐Paraná 2003–07–24 2001–08–11
P231/R68 Presidente Médici 2003–07–24 2001–08–11

Table 2
Spectral indices used in this study

Spectral indices Reference

Normalized Difference Vegetation Index Rouse et al. (1973)
NDVI=(R800−R680) / (R800+R680)

Soil‐Adjusted Vegetation Index Huete (1988)
SAVI=(1.5⁎R800−R680) / (R800+R680+0.5)

Normalized Difference Infrared Index 5 Hardisky et al. (1983)
NDII5=(R800−R1625) / (R800+R1625)

Normalized Difference Infrared Index7
NDII7=(R800−R2220) / (R800+R2220)
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spectrometer were convolved to Landsat ETM+ using filter
function of the ETM+ sensor.

For the selection of endmembers, we used Multiple
Endmember Spectral Mixture Analysis (MESMA) developed
by Roberts et al. (1998b). MESMA allows the number and types
of endmembers to vary on a pixel basis. A model that meets the
criteria of the selection such as lowest RMSE (2.5%), physically
reasonable fraction (0 < f < 1.0), etc., is considered the best
model for the related pixel and selected in MESMA classifica-
tion output. MESMA generates all possible combinations of
models based upon different input endmembers from a spectral
library. In this study, as input endmembers we selected five
endmembers for soil, nine for GV, and eleven for NPV. This
generated 495 models and we also added five already existent
models. In total, we had 500 models. See Roberts et al. (1998b)
for more details. MESMA was performed for all Landsat data
and we selected the best 4‐endmember model with NPV, GV,
Soil, and Shade (photometric shade), out of 500 models, that
was selected in pasture areas. With these selected endmembers

(Fig. 2b), simple SMA was performed generating NPV, GV,
Soil, Shade fraction images (Fig. 3) and RMSE (not shown).

The vegetation indices and fractions of NPV, GV, Shade and
Soil were extracted from four pixels along each transect in the
images and then averaged, representing 16 points (transects).
Finally, these data were correlated to the relative pasture field
data.

3. Results

3.1. Field measurements of grass biophysical properties and
the effects of the variables

3.1.1. Stocking rate, soil, and land‐use age
Table 3 summarizes field measurements of grass biophysical

properties from the 16 transects. Stocking rate in this table refers
to general animal stocking rate for each ranch, therefore those
transects with the same stocking rate imply that they are from
the same ranch (study site). Most of the study sites exceeded the
recommended stocking rate of 1.2 head/ha, indicating some
degree of overgrazing.

The results of ANOVA reveal that all the factors, i.e., soil,
land‐use age, and stocking rate are significant for all pasture
variables at P < 0.05 (Table 4). However, F values indicate that
grazing intensity is the most important and influential factor for
measurements of grass biophysical properties, followed by soil
and age. Direct comparisons of biophysical properties with soil
pH, soil available P, and base saturation showed weak
relationships, whereas stocking rate had a better relationship
(r2 =0.72, p value < 0.0001, with biomass) (Fig. 4). These
results demonstrate the importance of grazing intensity for
above ground pasture changes.

3.1.2. Pasture biophysical properties vs. remote sensing

3.1.2.1. Vegetation indices. All four vegetation indices
showed positive relationships with pasture measurements
(Fig. 5). In general, the correlations were highest for water
content and lowest for biomass. The chlorophyll based indices,
NDVI and SAVI had poor correlations (r2 =0.05−0.13)
compared to the SWIR based indices, i.e., NDII5 and NDII7
(r2 =0.33−0.38). NDVI and SAVI, which rely on the spectral
contrast between red and near‐infrared bands, are sensitive to
leaf‐chlorophyll content and LAI in vegetation, whereas NDII5
and NDII7 are more sensitive to leaf water content of vegetation
(Hardisky et al., 1983; Hunt and Rock, 1989). Low correlation
coefficients between field measurements of grass biophysical
properties and chlorophyll based indices can be accounted for
by the fact that pastures under dry conditions and intense cattle
grazing have small amounts of green leaves, and non‐
photosynthetic materials such as stems and dry leaves dominate
pasture biomass. Since NPV exhibits elevated reflectance in
band 3 (Fig. 2b), red and near‐infrared based indices are
hampered by the small contrast between these two bands in
NPV dominated grasses. In the case of NDII5 and NDII7, band
5 and band 7 vary as a function of grass water content in
pastures, while band 3 is less sensitive to grass water content.

Fig. 2. a) Landsat TM data showing typical land‐cover types in the study area.
B5, B4, and B3 in RGB; b) Selected Endmembers for Spectral Mixture
Analysis: NPV, GV, and Soil.
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3.1.2.2. Fraction images. The NPV fraction had the highest
correlations with biophysical data (r2 =0.68 with biomass),
followed by NPV+ Soil (r2 =0.52), Shade (r2 =0.50), and
GV (r2 =0.34) (Fig. 6). Soil fractions had the lowest cor-
relation (r2 =0.01) (Fig. 6). Like Vegetation indices, water
content had higher relationships with fractions compared to
biomass. NPV and NPV+Soil were negatively correlated to
pasture measurements, whereas GV and Shade showed posi-
tive relationships.

Higher and negative relationships of NPV with measure-
ments of grass biophysical properties indicate that less

productive and more degraded pastures are characterized by
high NPV (around 60%), whereas more productive pastures
have low NPV (30–40%). In contrast, GV showed positive
relationships with measurements of grass biophysical proper-
ties. The more productive pastures (i.e., higher biomass, water
content, and height) had GV around 30%, while low GV
fractions (less than 10%) were found in the more degraded
pastures. This can be explained by the following: Pastures
with higher biomass or water content have more standing live
biomass with a higher ratio of green leaves to senesced
leaves, resulting in low NPV and high GV fractions. Since

Fig. 3. Fraction images derived from SMA: NPV, GV, Soil, and Shade.
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cattle selectively graze on live and green biomass, the
decrease of the amount of above ground biomass by cattle
grazing implies the reduction of standing live biomass. As a
result, the amount of exposed senesced leaves and exposed
litter on the ground increases as the grass canopy is lowered
by cattle grazing, contributing to an increase in NPV and a
decrease in GV. Since pastures in the dry season are strongly
dominated by non‐photosynthetic materials as discussed
above, the magnitude of GV variability is smaller than NPV
variability for pastures and, therefore, grasses are better
characterized by NPV than GV. On the other hand, the GV
fraction had a higher r2 than NDVI and SAVI and as high an
r2 as NDII5 and NDII7. Spectral mixture models utilize all
spectral information of the six Landsat TM bands, and grazed
and dry pastures may be better characterized by GV than
typical vegetation indices that involve only two or three
bands.

Shade fractions increased as biomass increased. This is
probably related to a change in grass stature or canopy height
from low to high canopy height accompanied by the increase
in biomass. Taller grass canopies cast more shadows, whereas
short pasture canopies cast fewer shadows within their
canopies. This inference is supported by the fact that the
highest r2 for the shade fraction is found with canopy height
(r2 =0.65).

The soil fraction has been considered a very important
measure of pasture degradation or overgrazed areas, especially
in semi‐arid regions (Asner & Heidebrecht, 2003; Huete et al.,
2003; Pickup et al., 1998). In the case of our study, the soil
fraction was low and not a good indicator of pasture
biophysical properties since most of our study sites have a
high vegetation cover including live‐senesced biomass and
litter and a small amount of bare soil. Our results concur with
other studies for Amazonian pastures (Asner et al., 1999;
Asner et al., 2004). Another reason for low correlations of this

fraction is related to the fact that NPV and Soil are difficult to
discriminate using multispectral sensors due to the lack of
well expressed ligno‐cellulose bands in multi‐spectral data
such as Landsat (Roberts et al., 1993; van Leeuwen & Huete,
1996). In the case of this study, where NPV is predominant
and exposed soil is low, the soil fraction was not well
modeled.

Combining NPVand Soil avoids this spectral confusion, and
shows a clear decrease as biomass increased. The spectral
signatures of pastures with low biomass consist not only of
standing biomass, but also of the substrate beneath the pasture
canopy such as litter and soil. If the surface of an area is covered
by litter, a high NPV fraction can be found, but the soil fraction
can be high if the surface is bare soil. A good estimate of these
two fractions, NPV and Soil, greatly improves land‐cover
characterization. (Roberts et al., 1998a; van Leeuwen & Huete,
1996).

Over all, SMA fractions, except Soil, performed better for
pasture characterization compared to vegetation indices.
These fractions provide intuitive measures for the land
surface characteristics (physically meaningful measures of
the target) that facilitate our interpretation. Figs. 7 and 8 show
examples of the fractional characteristics for two extreme
pasture cases in terms of biophysical properties; unproductive/
degraded pasture and highly productive pasture. Site r (Table
3 and Fig. 7) has brighter pastures in NPV and NPV+Soil
fraction images than Site j (Table 3 and Fig. 8), whereas GV
and Shade fractions are higher in Site j compared to Site r
(Fig 8).

Grass biophysical change measured by SMA fractions can be
summarized by the conceptual model in Fig. 9. More productive
pastures can maintain higher biomass, which includes live
leaves with higher water content and taller plants. Higher GV
(around 20%) and Shade (15–20%) with lower NPV are
characteristics of these pastures. On the other hand, heavily
grazed and dry pastures have less live leaves with a short height
and litter on the ground, which results in a combination of high
NPV, low GV, and low Shade. The arrow in Fig. 9 indicates a
possible direction of the pasture degradation processes: from
highly productive to degraded pastures with low biomass, based
upon SMA fractional changes.

Table 3
Summary of field measures and characteristics of study sites

Transect S.D. a

(head/ha)
Age b Soil Biomass

(t/ha)
Moisture
(t/ha)

Height
(cm)

ja 1.09 Yg Alfisols 9.14 2.60 48 (17)
jb 1.09 Int Alfisols 9.91 3.37 49 (11)
jc 1.09 Old Alfisols 7.14 2.62 33 (11)
pa 1.60 Yg Alfisols 4.02 1.50 26 (7)
pb 1.60 Int Alfisols 5.84 2.48 28 (10)
pc 1.60 Old Alfisols 3.80 1.21 23 (10)
na 1.38 Old Ultisols 5.53 2.45 15 (8)
nb 1.38 Old Ultisols 4.79 1.95 17 (8)
ta 1.36 Yg Oxisols 6.40 2.51 36 (17)
tb 1.36 Int Oxisols 5.49 2.08 21 (11)
tc 1.36 Old Oxisols 3.58 1.35 21 (10)
ra 2.29 Int Ultisols 2.43 0.65 5 (4)
rb 2.29 Int Ultisols 1.18 0.33 5 (4)
sa 1.77 Old Oxisols 2.57 0.99 14 (12)
sb 1.77 Old Oxisols 5.50 2.08 17 (10)
sc 1.32 Int Oxisols 4.31 1.62 25 (18)

a Stocking rate.
b Age classes are: Yg=young (6–10 years), Int = intermediate (11–15 years),

Old=old (>16 years).

Table 4
ANOVA results for biomass, canopy moisture, and height with the factors
grazing, soil and age

Indices df F value Pr (F)

Biomass
Grazing 2 29.81 <0.0001
Soil 2 8.96 <0.001
Age 2 4.07 0.019
Moisture
Grazing 2 17.393 <0.0001
Soil 2 4.9 0.009
Age 2 3.32 0.04
Height
Grazing 2 152.57 <0.0001
Soil 2 93.46 <0.0001
Age 2 46.56 <0.001
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3.2. Grazing intensity vs. remote sensing

Relationships between grazing intensity and remotely sensed
data are similar to the ones between field measurements of grass
biophysical properties and remote sensing. The results are not
surprising given the fact that the remotely sensed data showed

reasonable relationships with grass field measures. Also grazing
intensity is the most influential factor for grass biomass dynamics.
In Table 5, NPV and NPV+Soil showed highly significant and
positive correlations with cattle stocking rate (r2=0.70 and 0.53,
respectively, at P<0.001). NDII5, NDII7, GV and Shade were
also significant and negatively correlated at P level<0.01. These

Fig. 4. Relationships of field pasture measures with soil pH, P, base saturation, and stocking rate.
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results suggest that heavily grazed pastures in Rondônia are
dominated by NPV, with a short canopy indicated by a low shade
fraction, and low canopy moisture indicated by NDII. Grass
biophysical changes caused by pasture management may
potentially be monitored by remotely sensed data such as NPV
during the dry season in Rondônia (Fig. 10).

4. Discussion

4.1. Grazed pasture analysis and remotely sensed measures

NDVI or other chlorophyll based indices have been widely
used to characterize grass grazing systems and estimate grass

Fig. 5. Scatterplots between field grass measures and vegetation indices.
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biomass (Field et al., 1995; Hill et al., 1998; Todd et al., 1998).
In general, good relationships have been found between field
data and vegetation indices. On the other hand, Hill (2004)
argued that a green vegetation index alone may not be
sufficiently sensitive enough to detect small spectral changes

associated with grazing. For example, previous studies have
suggested the use of SWIR bands for grass biomass estimates.
Hardisky et al. (1983) observed that NDII showed a better
relationship with live biomass (live leaves and stems) and
canopy moisture of Spartina alterniflora than NDVI. Everitt et

Fig. 6. Scatterplots between field grass measures and SMA fractions.
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al. (1989) obtained good relationships for reflectance in the
2200 nm wavelength and for indices using NIR and SWIR
bands in estimate of grass biomass.

The question about which remotely sensed measures are
more appropriate for the analysis of grazed pastures may depend
upon several factors. One of them is pasture phenology. If
remotely sensed data and field measures are from the wet or late
wet season, grass biophysical changes due to cattle grazing may

Fig. 7. Example of a low biomass pasture site (Site r).

Fig. 8. Example of a high biomass pasture site (Site j).

Fig. 9. Conceptual model of pasture change from productive to degraded based
on SMA fractions.
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be better monitored by greenness variation, and greenness
indices such as NDVI and GV are more appropriate for either
vegetation estimate or grazing effects (Thomson, 1995; Todd et
al., 1998; Wessman et al., 1997). In the case of this study, with a
mixture of dry and grazed conditions, grass variation depends
more on the amount of senesced grass, its brightness (albedo),
and water content, rather than greenness variation related to
chlorophyll content in vegetation. As a result, non‐photosyn-
thetic measures such as NPV and NDII had higher correlations
in this analysis. The results of this study on dry‐season pasture
conditions should represent pasture conditions captured in the
satellite imagery in Rondônia, since most of Landsat data are
acquired during the dry season in which pastures are dominated
with senesced materials.

Another factor is the effect of background substrate. In
remotely sensed data, the background signal from pastures is
usually litter or bare soil (Asner, 1998; Hill, 2004). Depending
upon whether the background is litter or soil, the spectral
signature for grass will change and our ability to characterize
grass will be affected. For dryer conditions such as the semi‐arid
regions, absolute quantification of vegetation cover in sparse
shrublands using NDVI is weakened by the variability of
background soil albedo and high proportions of NPV relative to
Plant Vegetation (GV+NPV) (van Leeuwen & Huete, 1996).
The soil fraction plays a very important role in characterizing
sparse vegetation. In the case of Amazonian pastures, litter
seems to be a predominant background substrate that con-
tributes to high NPV from pastures with low biomass. We
observed that most of high NPV values are from heavily grazed
pastures, which agrees with Asner et al. (2004). In sandy soil
conditions, however, degraded pastures may be better char-
acterized by the soil fraction (Asner et al., 2004). In the south
region of Rondônia, where there is a large area covered by
sandy soils, degraded pastures are usually characterized by the
patches of bare soils (Fernando, personal communication) and
the soil fraction may play an important role in indicating pasture
degradation.

An accurate quantification of NPV or soil fractions from
pastures is limited with multispectral sensor data because these
fractions are not well discriminated from each other. MODIS
500 m multispectral sensor provides a 1240 band that can
contribute to improved characterization of regional pasture
biophysical conditions in Rondônia. On the other hand, the
separation of NPV from Soil would be more complicated at the
coarser spatial resolution, i.e., 500 m. The question regarding

how much the amount of soil is required to be discernible from
NPV should be addressed by future study of pasture
characterization in this region. Soil fractions derived from the
hyperspectral sensors have been shown to vary significantly
between grazing treatments because of the appearance of bare
soils in grazed areas (Asner & Heidebrecht, 2003; Huete et al.,
2003; Wessman et al., 1997). The use of hyperspectral data can
add more accurate information to improve characterization and
estimates of biophysical properties of grazed pastures in the
Amazon.

Overall, SMA fractions demonstrated good relationships
with grass biophysical properties and provided physically
meaningful measures associated with the variation of pasture
biomass, water content, and canopy height. In the conceptual
model of pasture change built upon SMA fractions, increased
grazing intensity can drive pasture degradation.

One of the major sources of errors in this study may be
strongly related to scale of field sample size relative to pixel
resolution. Our study relied on 0.5 m2 filed plots to represent a
30 m pixel. This sampling scale may be unrepresentative of
pasture properties over Landsat pixel. Hill (2004), for example,
states that a scale difference between field plots less than 1.0 m2

and satellite pixels larger than 400 m2 introduces sampling
errors into the development of biomass prediction. A higher
number of field plots should improve relationships between
remotely sensed measures and field data.

4.2. Grazing and remote sensing

Previous studies have successfully identified the signals of
significant grazing impacts on grass biomass from remotely
sensed data, but most have dealt with a clear contrast between
grazed and ungrazed treatments only, or with different types of
treatments such as burning (Saltz et al., 1999; Wessman et al.,
1997; Wylie et al., 2002). Other studies have investigated
grazing impacts relative to animal behavior, however, they were
based on very small and specific areas such as the impacts of

Table 5
Linear regression of remotely sensed measures against grazing intensity

Variables R2 Slope Intercept Pr (t)

NDVI 0.03 −0.03 0.53 0.26
SAVI 0.04 −0.02 0.34 0.25
NDII5 0.39 −0.08 0.01 <0.01
NDII7 0.40 −0.12 0.41 <0.01
NPV 0.70 0.20 0.18 <0.001
GV 0.33 −0.11 0.35 0.011
Soil 0.02 −0.01 0.19 0.54
Shade 0.43 −0.08 0.29 <0.01
NPV+Soil 0.53 0.19 0.36 <0.001

Fig. 10. Relationship between stocking rates and NPV derived from Landsat.

325I. Numata et al. / Remote Sensing of Environment 109 (2007) 314–327

INPE ePrint: sid.inpe.br/mtc-m17@80/2007/12.07.18.12 v1 2007-12-08



grazing intensity gradient near water (Harris & Asner, 2003;
Pickup et al., 1998), which does not indicate general pasture
conditions under grazing systems. This study analyzed the
effects of grazing intensity on pasture biophysical variables
measured in the field and remote sensing along a gradient of
stocking density over the study sites. Remotely sensed measures
such as NPV quantified the variability in measurements of grass
biophysical properties as a function of stocking rates. As
expected, grazing intensity and remotely sensed data from
pastures showed good relationships. The results may be used to
indicate the regions affected by high grazing intensity in
Rondônia using remote sensing.

For more specific analyses, however, there are some issues to
be considered. First is grazing rotation. Although, this study
assumed the minimum effect of grazing rotation, the actual
effects of the rotation on grasses inside a study site, for example,
are not well understood. Second is pasture types, i.e., beef and
dairy, and related grass species. In this study, beef pastures with
the grass species B. brizantha were analyzed. Addition of dairy
pastures with different species such as Brachiaria decumbens,
the most abundant species in the region after B. brizantha, will
complete our knowledge about pasture characterization using
remote sensing. These points should be addressed in future
studies.

5. Conclusions

In this study, we investigated the potential of remote sensing
for either quantification of pasture biophysical properties or the
analysis of grazing impacts on pasture conditions at the local
scale using moderate resolution satellite sensor, i.e., Landsat
TM. For grazed pastures under dry conditions, the NIR‐SWIR
band indices, NDII5 and NDII7, better correlated with field
measurements of grass biophysical properties than red‐NIR
band indices, NDVI and SAVI. SMA fractions provided more
intuitive information on pasture conditions. NPV was found to
be a good proxy of pasture degradation in Rondônia and
successfully showed the impact of grazing on pastures. Other
characteristics such as pasture height can also be estimated
using the Shade fraction. Grass moisture was better correlated
with remotely sensed data than biomass. These results may
reflect the main characteristics of Rondônia's pastures, since the
satellite data are primarily collected in the dry season.

For more accurate quantification, especially better discrimi-
nation of Soil and NPV, higher spectral resolution data such as
Aster and Hyperion are needed. In addition, since we used
single date satellite images and field data, the consistency of
these results should be tested at a different time of the year,
investigating whether NPV provides the best estimate for
biomass and grazing intensity over longer periods. Temporal
analysis using high temporal resolution sensors such as MODIS
will be able to address this question.
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