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Abstract 

This paper presents the 1
st
. part of a simulation and theoretical study on the stabilization of an analog 

model of a satellite with flexible appendages when it is driven by a discrete-time attitude control. This 

control is the Tustin s-z mapping equivalent of a continuous-time asymptotically stable proportional 

plus derivative (PD) control. Its design is done considering aspects such as the aliasing and the hidden 

oscillations. It is tested with an analog reduced model (five vibration modes) of the CBERS1 (China-

Brazil Earth Resources Satellite) launched with success on October 14, 1999. It is shown that the 

Tustin s-z mapping may instabilize some modes. To circumvent this, five techniques are tried: 1) 

reducing the sampling-period TS; 2) using an anti-aliasing filter; 3) reducing the control gains; 

4)increasing the structural damping-ratio; 5) changing the mapping to one of the Schneider' s-z 

mappings; getting partial success only. We go further and then 6) propose and use a new (ST1) 

mapping that behaves better than techniques 1-5 under the same conditions. 
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1. Introduction. 

Digital controls of analog plants, including satellites, are becoming very common today due to their 

low price, extensive programming, logic and arithmetic capabilities, etc. Despite these advantages, 

their time sampling, amplitude quantization, and input, processing, and output delays are important 

disadvantages to be considered. They may become critical when the plant has oscillation modes that 

are above the Nyquist frequency (half of the sampling frequency), as happens in satellites with 

flexible appendages. Then, a careful study of their consequences on that control and even on its 

stability must be done. 

 

This paper presents the 1
st
. part of a simulation and theoretical study of these consequences and their 

possible corrections (Tredinnick,1999c). Simulations that use discrete controls of analog plants are 

better than others that discretize the model too; and they are closer to the real case, that use digital 

controls of analog plants. In this work we mapped the same PD analog control law in three ways: by 

Tustin rule (Franklin & Powell, 1980), by Schneider rule (Schneider, 1994), and by a new (ST1) rule 

(Tredinnick, 1999a). This last one is new and a promising one that must be tested with other controls 

and models. Some model characterization of the CBERS1 satellite may be found in 

Tredinnick(1999c), where we just may see structural and control details around this three axis (roll, 

pitch and yaw) simulation. Structurally, the satellite simulated has a rigid body weighting 1.4 ton, with 

only one flexible appendage weighting 49 kg. This flexible appendage has 6.135 m x 2.4 m. In these 

simulations the atmospheric drag generating a center of pressure was near to the center of mass of the 

flexible appendage; and the perturbations due the pressure of solar radiation were small. Two cases 

were simulated: The first one with low gains and high sampling frequency ωS, that is, low sampling 

period TS. The second with high control gains and low sampling frequency, that is, high sampling 

period. This last case is a bad situation to the control system due to the aliasing and hidden oscillations 

phenomena (Tredinnick, 1999c), and brings the objective of this work: to test these discrete-time 

controller mappings for the same control law in presence of the aliasing and hidden oscillations 

phenomena to attain the stability. We’ll see that the classical mappings and/or modifications around 

the controller (structural damping ζ changing, anti-aliasing filter, etc.) don’t solve the instability 
problem and we’ll see that the best alternative is to change the analog-digital control mapping using a 

new-rule proposed in Tredinnick(1999a). A controller that may work satisfactorily in this worst case 

would be cheaper than others, allowing to increase other satellite technical resources with the 

economy proportioned by the controller. 

 

2. The CBERS1 model used 

In this work we simulated a 3 axis, 18 modes (1rigid + 5flexible modes per axis) CBERS1 model in 

MATLAB 4.2.1.c with the block diagram of Figure 1, with the parameters of Table 1, and with the 

integration step of 0.01 s. 

 

3. Analog PD control. 

We use high control gains in this analog case and we may note from Figure 2 that the control easily 

stabilize the attitude angles of this satellite model. In Figure 2a we have the roll, pitch yaw attitude 

angles (in radians), respectively; and in Figure 2b we have their respective control signals (in N.m). 

Both use ζ = 0.02 according to experimental results. 
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(a) 

 
(b) 

Fig. 2. Analog attitude control of a CBERS1 model: (a) attitude angles; (b) control signals. 

 

4. Discrete pd control designed by Tustin rule. 

 
(a) 

 
(b) 

Fig. 3. Discrete attitude control of a CBERS1 model using high control gains and TS = 0.1 s: (a) 

attitude angles; (b) control signals. 

 

In Figure 3b note the strong control signals needed to guarantee the attitude stabilization of Figure 3a. 

This phenomenon occurs due the sampler keying with frequency equal to the sampling frequency ωS, 

probably due the presence of complex conjugated poles with negative real part inside the unit circle in 

z-plane. The analytic explanation of this effect is very well documented in Isermann (1989) and 

Franklin (1981). 

 

Figure 4 seems to be stable due to low gains, despite the Ts = 1.6 s. 

In Figure 5 our problems begin. How could we stabilize the system when we have high control gains 

and high sampling period TS? Classically, we may attempt to: 1) sampling period reduction; 2) an 

anti-aliasing filter; 3) control gain reduction; 4) and structural damping increase. We may try to 

stabilize the control system using these classical alternatives, as we will see in the next topics. 
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(a) 

 
(b) 

Fig. 4. Discrete attitude control of a CBERS1 model using low control gains and TS = 1.6 s: (a) 

attitude angles; (b) control signals. 

 
(a) 

 
(b) 

Fig. 5. Discrete attitude control of a CBERS1 model using high control gains and TS = 1.6 s: (a) 

attitude angles; (b) control signals. 

 

4.1. Stabilization by using sampling period reduction 

It is the simplest and easiest solution. However, the availability and cost of processors, (A/D and D/A) 

converters, etc. with space quality may rule out this method. 

4.2. Stabilization by using anti-aliasing filter 

Here we insert anti-aliasing filters between the sensor outputs and the discrete controller inputs. The 

anti-aliasing filter is, basically, a low-pass filter that strongly attenuates the feedback of vibration 

modes higher than the Nyquist frequency, trying to eliminate/reduce the bad effects of their aliasing. 

In Figures 6 and 7 we used a fourth order Butterworth filter as an anti-aliasing pre-filter. Comparing 

Figure 6b with Figure 4b we note that the anti-aliasing pre-filter reduces the control energy (or fuel) 

used. However, Figure 7 shows that the anti-aliasing pre-filter included did not correct the instability 

problem shown in Figure 5. 
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(a) 

 
(b) 

Fig. 6. Discrete attitude control of a CBERS1 model using low control gains, TS = 1.6 s, and an anti-

aliasing filter: (a) attitude angles; (b) control signals. 

 
(a) 

 
(b) 

Fig. 7. Discrete attitude control of a CBERS1 model using high control gains, TS = 1.6 s, and an anti-

aliasing filter: (a) attitude angles; (b) control signals. 

4.3. Stabilization by using gain reduction 

The stabilization by control gains reduction must be tried but it has the inconvenient to change the 

closed-loop system specifications (settling time, rise time, overshoot, etc.). 

4.4. Stabilization by using structural damping increase 

We know that increasing the structural damping attracts the poles to the origin of the unit circle in z-

plane, placing them inside this circle, that is the asymptotically stable region. This seems to be a 

powerful method to stabilize the system.Unhappily, this method seems not to be practical and efficient 

enough with high control gains and sampling period TS , as shown in Figure 8 for the underdamped 

case, and in Figure 9 for the overdamped case. 

 
(a) 

 
(b) 
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Fig. 8. Discrete attitude control of a CBERS1 model using high control gains, TS = 1.6 s, and middle 

damping. Underdamped case with ζ = 0.6. (a) attitude angles; (b) control signals. 

  

(a) (b) 

Fig. 9. Discrete attitude control of a CBERS1 model using high control gains, TS = 1.6 s, and high 

damping. Overdamped case with ζ = 2. (a) attitude angles; (b) control signals. 
Now, we outline how a closed-loop discrete time control system working over an overdamped plant is 

presented the oscillations shown: this phenomenon occur in each axis due the superposition of the 

contributions of: a) two closed-loop complex conjugate poles generated from two open loop poles at s 

= 0 or z = 1 from the rigid mode; b) two closed-loop real or complex conjugate poles generated from 

two open loop real or complex conjugate poles in of each flexible mode; c) and one closed loop pole 

at z ≅ -1 generated by the z = -1 pole from the Tustin rule. This one is on the transient as a keying at 

the sampling frequency, describing a strong signal superposed to the mode frequency, as explained in 

Isermann (1989), Section 3.5.1, and Franklin (1981), Section 2.4. 

5. Stabilization by changing the s-z mapping 

The previous results opened the path to suggestions of new methods of stabilization, including 

changing to a s-z mapping that produces asymptotically stable z poles, as follows. 

5.1. Stabilization by using Schneider rule 1 

Schneider (1991 e 1994) presented some s-z mappings based in high order Adams-Moulton 

integration methods. In Schneider (1991) the third-order Adams-Moulton integration method (Eq. 1) 

is presented. This may be rewritten as a finite difference equation, as shown in Eq. 2. After the 

application of the z-transform over Eq. 2 we finally obtain the first Schneider s-z mapping, as we may 

see in the Eq. 3. 
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These new s-z mappings called attention because they promised to be better than other mappings 

methods (Schneider, 1994) with integral actions of control. Figure 10 shows the results of a simulation 

using Schneider rule 1(Eq. 3) to map the analog PD control using TS = 1,6 seconds, damping ratio ζ = 
6 and high control gains. It becomes unstable even with ζ = 6; and it grows faster than the Tustin 
simulation with ζ = 2 at Figure 9. The explanation for that may be seen in Tredinnick (1999a). 



 7 

 
(a) 

 
(b) 

Fig.10. Discrete attitude control of a CBERS1 model using high control gains, TS = 1.6 s, and 

Schneider rule 1. Overdamped case with ζ = 6. (a) Attitude angles; (b) control signals. 
5.2. Stabilization by using new rule 1 

A close look of the previous mappings and results motivated us to propose a new s-z mapping 

obtained by shifting the pole in z = -1 of the Tustin rule to z' = -ξ , 0 < ξ < 1. This avoids or retards the 
instabilization in closed-loop by moving that pole to the interior of the unit circle; and uses ξ as a 
design parameter. Therefore, we propose: 
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This new rule covers cases from the Tustin (ξ = 1) to the Backward (ξ = 0) mappings, which become 

particular cases of this new rule. Figure 11 shows the simulations with the new-rule using high gains, 

sampling period TS = 1,6 s, damping ratio ζ = 6, and ξ = 0,2. It also shows that stability was reached 
in presence of aliasing and hidden oscillations. 

 
(a) 

 
(b) 

Fig. 11. Discrete attitude control of a CBERS1 model using high control gains and TS = 1.6 s. 

Overdamped case with ξ = 0.2 and ζ = 6. (a) attitude angles; (b) control signals. 
5. Conclusions. 

Initially, is important to call the attention for the existence of the instability problem that may be 

introduced in discrete time control systems of flexible plants. That is, the choice of the sampling 

period TS, anti-aliasing filters, control gains, structural damping, and the kind of s-z mapping chosen 

to design this discrete-time controller will be the decisive factors to keep the stability. 

We may note that the new rule represents a promising alternative to the stabilization of discrete-time 

control systems when the plant is a flexible structure and it has high values in the sampling period TS. 
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The simulations with the new-rule shown a performance very much better than the other tested under 

the same conditions. 

It is also important to note that this model of CBERS1 satellite doesn't consider the increasing 

damping ratio with the number of the vibration modes and other non-linear phenomena. Thus, the 

conclusions obtained here are valid for the model used in this work but not necessarily for the real 

satellite. 
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Appendix: a CBERS-1 model and its parameters 

The structural analog model of CBERS-1 satellite using the assumed modes method was done by 

Silva (1997), in your Master Thesis at INPE, and it is capable of execute simulations for until five 

vibration modes, considering the coupled dynamic equations for this MIMO system. 

The simulation using a CBERS-1 model (an asymmetric satellite) has used the following structural 

data:  

- total mass: 1400 kg; 

- flexible appendage mass: 49 kg; 

- flexible appendage length: 6,135 m; 

- rigid body inertia tensor: 
















−

−

=

18318,95,21

8,910028,12

5,218,121983

0I  (Equ.6) 

- flexible appendage inertia tensor: 
















=

06,69800

0744,220

00720

aI  (Equ.7) 

From the equation 7 we may note that although the calculations has been done for an Euler-Bernoulli 

thin beam, it was considered inertia around the y axis (pitch axis 744,2222 =Ιa ) trying to oblige the 

model to work as it was a plate, that is interesting to do a more simplify calculation without affect the 

results of a bad form. Figure 12 shows the relationship between the X,Y,Z with the attitude axis roll, 

pitch and yaw. 

 

Fig. 12: Attitude axis for the simulation with a CBERS-1 satellite model. 

As shown in Silva (1997), were considered in the dynamical equations some disturbs due atmosferic 

drag, solar pressure radiation and to magnetic residues. 
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These disturbs repel the attitude axis of its initial conditions considered null (0 rad). Trying to correct 

the effect provoked by these disturbs the attitude control starts its task. This control is done by torques 

and in these simulations we didn’t considered boundaries for these. Therefore would be interesting to 

consider these boundaries in a next work. In this present work the main objective is the stability 

analysis of the discrete-time control, where we don’t need to consider these boundaries. 

We use a fix integration step of 0.01 seconds to the computer can simulate the more higher vibration 

mode (obeying the Nyquist criterion). By this form we may avoid the aliasing and hidden oscillations 

phenomena during the simulation process. As we may note in Table 1, the more higher vibration mode 

frequency is 25.7241 Hz, implying that we be free of the aliasing and hidden oscillations phenomena 

if, at least, a frequency of 51.4482 Hz be used as frequency of the integrator of this simulation, with 

Nyquist frequency of 25.7241 Hz. As we use 100 Hz as frequency of the integrator of this simulation, 

with Nyquist frequency of 50 Hz, we may be secure that all the five first modes, in each three axis, 

will be simulated in the computer without problems. The single problems are the high elapsed time of 

the simulation and the great data size. In Table 1 the x, y and z axis corresponds, respectively, to the 

roll, pitch and yaw axis. 

TABLE 1 –VIBRATION MODES TO AN ASSYMETRIC MODEL OF CBERS-1 SATELLITE. 

Mode Axis Frequency (Hz) Damping ratio 

x 0 0 

y 0 0 

 

Rigido 

z 0 0 

x 0.1312 0,02 

y 0.1331 0,02 

 

1 

z 0.4526 0,02 

x 0.6874 0,02 

y 0.6883 0,02 

 

2 

z 1.8999 0,02 

x 1.9005 0,02 

y 2.8361 0,02 

 

3 

z 3.7141 0,02 

x 3.7146 0,02 

y 6.1346 0,02 

 

4 

z 6.1350 0,02 

x 7.9411 0,02 

y 15.5614 0,02 

 

5 

z 25.7241 0,02 

 


