
An Approach for Dependability Conformance Analysis from Code to
Architecture Description

Rovedy Aparecida Busquim e Silva
Instituto de Aeronáutica e Espaço (IAE), São José dos Campos, SP, Brazil, 12228-904

Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP, Brazil, 12228-900
rovedyrabs@iae.cta.br

Abstract

In the context of an increasing importance of software in
aerospace field, the work presented in this paper aims to ve-
rify dependability attributes in the software architecture and
implementation levels for conformance analysis. To fulfill this
goal, the work focuses on the definition of an approach to be
incorporated into the software verification process that helps
software engineers to identify faults. The steps of the proposed
approach include the modeling of software architecture using
AADL models and formal verification program using speci-
fied tools. The AADL models are built by using features of
the AADL Error Model Annex and AADL properties. A case
study to show the application of the proposed approach is des-
cribed.

1. Introduction

Critical Real-Time Systems are systems whose failure
can result in injuries, environmental damage, or even loss
of lives. Due to the criticality of this type of system, depen-
dability requirements should be incorporated in its develop-
ment. However, dependable software development remains
a challenge.

According to ESA [7], the dependability assurance shall
be implemented by means of a systematic process for spe-
cifying requirements for dependability and to demonstrate
that these requirements are achieved. A software verifica-
tion process evaluates whether dependability requirements
are achieved through software fault handling methods and
techniques (fault prevention, fault tolerance, and fault re-
moval). The use of a software verification and validation
process can help find faults between the phases of software
development life cycle, aiming to determine whether the
software requirements are implemented correctly and com-
pletely and are traceable to system requirements.

One of software verification activities is the conformance

analysis between the software architecture and source code.
The requirements, specification, and various levels of the
design are all descriptions of the same system, and thus
should be functionally equivalent [14]. If each one of these
descriptions is prepared in a suitable form, it is possible to
prove this equivalence, thereby greatly increasing the relia-
bility in the development process. When a system is defined
informally, usually the process of verification relies heavily
on the skill of the development team and involves activi-
ties such as documentation review, source code inspection,
and checklists. The perception of equivalence of functiona-
lities between the phases may not be so obvious. The use of
formal methods can be used in ways that allow functional
comparison.

In a software verification process, individually and for-
mally verified software architecture and source code must
comply with each other. However, studies frequently show
that there is a degradation in the knowledge related to soft-
ware architecture during the development process [9]. Shaw
and Clements explain that the lack of conformance dooms
architecture to be irrelevant as the code sets out on its own
independent trajectory [13]. A review about the same to-
pic, explains that the best architecture is worthless if the
code does not follow it [3]. This is a risk during initial de-
velopment; in many cases the risk becomes a certainty in
post-deployment maintenance. Tools to analyze code for
architecture conformance are still inadequate and rely on
humans making suggestions. In this context, the proposed
approach is to carry out a formal conformance analysis in
the software architecture and source code considering the
dependability requirements. The results of analysis must
identify inconsistencies that can indicate a fault and thus,
contribute to the fault removal technique. The fault remo-
val is beyond the scope of this work. This idea has been
considered in the future works.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the background related to dependability, des-
cription architectural language, and formal methods. Sec-
tion 3 is an overview of our stepwise approach for depen-

dability conformance analysis. Section 4 presents the case
study and Section 5 concludes the paper.

2. Background

2.1. Dependability

Dependability of a computing system is the ability to de-
liver service that can justifiably be trusted [12]. This pro-
perty integrates the following basic attributes: reliability,
availability, safety, confidentiality, integrity, and maintaina-
bility. The development of a dependable computing system
calls for the combined utilization of a set of techniques re-
lated to faults (prevention, tolerance, removal, forecasting).

Within the techniques, our work aims to contribute with
software fault removal methods and techniques. Remo-
ving software faults directly improves dependability be-
cause they are no longer potential causes of failure. This te-
chnique is related to the software verification process. Soft-
ware fault removal methods and techniques are those that
are used to verify that the undesired behavior of the software
product does not have a severe effect on the system’s ove-
rall behavior, and these should be assessed for every soft-
ware development activity and then removed or controlled
to reduce their effect. According to [5], the software fault
removal is composed of the following steps: fault identi-
fication, fault detection, fault isolation, and fault removal.
The faults considered in this work are related with reliabi-
lity issues such as timeliness.

2.2. AADL

The Architecture Description Languages (ADLs) were
created to help model software architecture and hardware,
each one representing specified features. The use of one ar-
chitecture description language supplies an important foun-
dation to the verification, since that describes how the sys-
tem must behavior in the high level viewpoint, including
software and hardware.

One of ADLs which we have focused our study on is
Architecture Analysis & Design Language (AADL), whose
first standard was available in 2004 [8]. The AADL stan-
dard provides modeling concepts for description and analy-
sis of system architecture in terms of software components,
hardware components, components of computing platform,
and their interactions. AADL is an evolution of META-H
language and for this reason, it was specially created for
specifying and analyzing embedded real-time systems.

AADL has two important features that can be inserted
in the AADL specification: set of properties and annex li-
braries. Both allow the architecture designer to extend the
language to customize an AADL specification to meet spe-
cific requirements of domain. For example, the error model

annex can be used to define reliability models and proper-
ties that facilitate the tree fault analysis of architecture. The
features are used to incorporate new analysis in the archi-
tectural design.

2.3. Formal methods

Accidents caused by errors in software products are a re-
ality. Despite of the importance of software testing, it is not
the solution to achieve the forecasting in real-time systems.
According to Butazzo, the reason is that in real-time ap-
plications, the flow of programs depends on input date and
environmental conditions that during the test phase can not
be completely replicated [2]. The test phase can provide a
partial verification related to a subset of input date.

Formal methods are complementary to traditional
methods and increasing their application is recommended.
The recommendation of the use of formal methods can be
found in important standards such as ECSS-E-ST-40C [6],
specifically used in the aerospace area. Formal methods in-
clude a set of elements: formal specification languages, mo-
del checkers, and theorem provers. A formal specification
language depicts the features of a system through a accurate
vocabulary, a syntax and a set of semantic. Model checking
is an automated formal technique based on the exploitation
of states that can be used to obtain evidence that system se-
curity is not busted [1]. Theorem proof is a tool that allows
finding proof of a system from a set of axioms [4].

3. Proposed Approach

The dependability conformance analysis, a verification
activity, is the main focus of this work. The approach ve-
rifies whether one dependability requirement implemented
in the source code satisfies or is correct with the same de-
pendability requirement represented in the software archi-
tecture. A source code SRC satisfies an architecture ARQ
if and only if specified dependability requirements of code
RSRC satisfies dependability requirements of architecture
RARQ:

SRC |= ARQ iff RSRC |= RARQ

The dependability requirements are verified in both phases
and the goal is fault identification. The main contribution
of this proposal is to help the dependability fault removal
technique. Figure 1 shows the idea of the proposed work.

The scope of this work considers a source code already
concluded and an architecture that has not been described
with an architecture design language. The application do-
main is embedded real-time systems. The solution uses an
architecture description language, model checking, and the-
orem prover for running conformance analysis. The work

2

step 2

Dependability requirements

Conformance analysis

Source
code

Software
 architecture

Fault identification

Formal
Verification

Formal
Verification

step 1

step 3

Inconsistency detection

Figura 1. Proposed approach.

starts with activities to identify potential hazards and safety-
critical functions based on software documentation availa-
ble. The next step is an analysis of the safety-critical func-
tions identified and the definition of AADL models which
will be created and verified. After that, the same safety-
critical functions identified are then traced into source code
functions and later formal verification. Finally, the results
of verification should be analyzed and classified in terms
of conformance criteria. This work can be divided in three
main steps.

The first step consists of elaborating an architectural des-
cription and verification. The methodology for architectural
description follows the rules of standard IEEE 1471-2000
[11]. The standard describes recognized tendencies to build
description architectures and recommends that description
architecture be organized in architecture viewpoints. The
formal architectural verification will be carried out by mo-
del checking. The model checking selected represents the
behavior of the software by timed automata. In this task, it
is required to define how to expand the AADL models in the
way that will be possible to extract timed automata models
from AADL models automatically. The basic idea is to de-
velop a procedure that allows an architecture specification
to translate to model checking language, as pointed out in
Figure 2. However, some works are being studied in order
to verify the feasibility of their use in this step. Also the
possibility of using theorem prover will be studied.

The second step is defining one procedure to execute a
formal verification implementation. Formal methods can
be applied directly to source code, which is called in the
literature: formal verification of software or program. The
formal verification of programs helps to verify the correct
behavior of the programs. The technique selected for this
step is the source code annotation process. It is based on an
annotation specification language to produce first-order lo-

Specification + properties
AADL

Formal verification

Specification and properties in the modeling and
query language of model checking format

Translation procedure

Figura 2. Formal verification of architecture.

gic proof obligation called Verification Conditions that can
be manipulated by a proof tool. The elementary idea is that
if all verification conditions can be proved valid then the
program is assured to be correct. Figure 3 shows one dia-
gram with the annotations source. The comments written
in natural language in the source code can be formalized
as annotations and the requirements also are source for in-
sertion of annotations in the code. Checking dependability
requirements in the source code is a challenging job.

Dependability
requirement

Source
 code

Formal verification
 of source code

Source code annotated
(manual)

Figura 3. Annotation sources to formal verifi-
cation.

Finally, the last step consists in defining a procedure for
dependability conformance analysis. The formal dependa-
bility conformance analysis will be defined according to the
architecture verification and source code used. The basic
idea is establishing an equivalence relation between depen-
dability properties proved in the architecture and dependa-
bility properties proved in source code. Additionally, the
analysis considers three types of conformance: convergen-
ces, divergences, and absences. Convergence is a relation
between two components that are allowed or were imple-
mented as intended. Divergence is a relation between two
components that are not allowed or were not implemented
as intended. Absence is a relation between two components

3

that were intended but not implemented. The result of this
final step supplies evidence of possible fault in the source
code, since the software architecture was verified and used
as reference model.

4. Case study

The scenario is based on a spacecraft capable of laun-
ching satellites weighing maximum 350 kg at altitudes up
to 1000 km. The embedded software is a critical in real-
time, whose main assignment is to perform the functions of
initiation, verification, and control of the vehicle, from mi-
nutes before its launch up to putting the satellite into orbit.
Its function is to navigate and guide the vehicle, control its
actuators, manage the sequence of events, address and send
the telemetry data, and carrying out the pre-launcher. The
case study is based on the Brazilian Satellite Launcher Vehi-
cle [10]. In the software VLS project, the dependability is
implemented by fault prevention, fault tolerance, and fault
removal. The fault prevention is provided through the assu-
rance product plan, which focuses in the following attribu-
tes: functionality, reliability, maintainability, and efficiency.
The fault removal is obtained through simulation and tests.
The fault tolerance has an information redundancy used in
communication with the ground system. Currently, the veri-
fication process of the software is a typical process without
formality.

The application of methodology in the case study starts
with the study of Software System Specification and Soft-
ware Requirements Specification documentation in order to
analyzing the safety-critical functions and to identify de-
pendability requirements. According to step 1, in the sec-
tion 3, the AADL models will be elaborated based on selec-
ted requirements. The actual architecture is depicted in task
diagrams in a static view without any associated verification
and AADL models will allow the verification and analysis.
Next, the step 2 is applied in the source code implemen-
ted in programming language C. The annotations will be
inserted in the code in a manual way. Then, the step 3 is ap-
plied and the conformance analysis will report results that
might reveal inconsistencies. From those results is possible
to identify faults in the VLS software.

5. Conclusions

This paper presented an approach for dependability con-
formance analysis in the software architectural and imple-
mentation levels. The aim of the approach is to contribute
with the software removal fault technique through the fault
identification, thereby showing if each of the dependability
requirements is met individually and, if possible, indicating
that they are met collectively. The main characteristic of this

approach is the use of formal methods. The application of
formal methods in the conformance analysis provides grea-
ter accuracy than others techniques that depend on the skills
of the development team.

The dependability plays an important role in the safety-
critical software development. The fulfillment of dependa-
bility software requirements should increase the quality of
the final product and decrease the probability of lost mission
in the aerospace field. Further, the resulting approach can
be adapted to a process of correct-by-construction software
development into the aerospace field.

Acknowledgments
I would like to thank my research advisors, Jose M. Parente
de Oliveira and Jorge Sousa Pinto, for their support and as-
sistance.

Referências

[1] G. Behrmann, A. David, and K. G. Larsen. A tutorial on
Uppaal. In School on Formal Methods for the Design of
Computer, Communication, and Software Systems, 2004.

[2] G. C. Buttazzo. Hard Real-Time Computing Systems - Pre-
dictable Scheduling Algorithms and Applications. Springer,
Italy, 2005.

[3] P. Clements and M. Shaw. The golden age of software ar-
chitecture revisited. IEEE SOFTWARE, 26(4):70–72, July
2009.

[4] CoqTeam. The Coq Proof Assistant Reference Manual,
2010.

[5] ECSS. ECSS-Q-80-03 Space product assurance - methods
and techniques to support the assessment of software depen-
dability and safety, March 2006.

[6] ECSS. ECSS-E-ST-40C Space Engineering - Software,
March 2009.

[7] ECSS. ECSS-Q-ST-30C Space Product Assurance - Depen-
dability, March 2009.

[8] P. Feiler, D. Gluch, and J. Hudak. The architecture analysis
& design language (AADL): An introduction. Technical Re-
port CMU/SEI-2006-TN-011, Carnegie Mellon University,
Software Engineering Institute, February 2006.

[9] M. Feilkas, D. Ratiu, and E. Jurgens. The loss architectu-
ral knowledge during system evolution: An industrial case
study. In IEEE 17th International Conference on Program
Comprehension, pages 188–197, Vancouver, BC, May 2009.

[10] IAE. Instituto de Aeronautica e Espaco - Projeto VLS, 2011.
[11] IEEE. IEEE Recommended Practice for Architectural Des-

cription of Software-Intensive Systems - IEEE Std 1471,
2000.

[12] J. Laprie. Dependability: basic concepts and terminology,
volume 5 of Dependable Computing and Fault-tolerant Sys-
tems. Springer-Verlag, Vienna, 1992.

[13] M. Shaw and P. Clements. The golden age of software ar-
chitecture. IEEE SOFTWARE, 23(2):31–39, March 2006.

[14] N. Storey. Safety-Critical Computer Systems. Addison-
Wesley, 1996.

4

