
Model Checking a Decentralized Storage Deduplication Protocol

João Paulo
University of Minho

jtpaulo@di.uminho.pt

José Pereira
University of Minho
jop@di.uminho.pt

Abstract—Deduplication of live storage volumes in a cloud
computing environment is better done by post-processing: by
delaying discovery and removal of duplicate data after I/O
requests have been concluded, impact in latency can be mini-
mized. When compared to traditional deduplication in backup
systems, which can be done in-line and in a centralized fashion,
distribution and concurrency lead to increased complexity. This
paper outlines a deduplication algorithm for a typical cloud
infrastructure with a common storage pool and summarizes
how model-checking with the TLA+ toolset was used to uncover
and correct some subtle concurrency issues.

I. INTRODUCTION

Although deduplication has been in use for a long time
in backup and archival systems [1] and is now an important
feature of storage appliances, cloud computing in general
and the commodity server infrastructure in particular bring
novel opportunities, needs, and means to apply deduplication
to general purpose live storage volumes. An emerging and
interesting example is the redundant data found across
virtual machine (VM) images, which are massively used in
cloud computing infrastructures. It has been pointed out that
up to 95% of space can be reclaimed for system images in
a typical cloud provider.

Physical space reclaimed by deduplication allows reduc-
ing storage’s infrastructure costs and having extra space for
improving storage’s reliability with, for example, additional
RAID configurations. Recognizing duplication might also
have a positive performance impact throughout the storage
management stack, namely, in cache efficiency and network
bandwidth consumption.

This paper presents a deduplication algorithm for a dis-
tributed environment with a shared storage that can be
mapped to a typical scenario where several commodity
servers are storing their data in a common pool. More
specifically, the algorithm eliminates duplicated data among
groups of VMs running in each server and storing their im-
ages in a virtual shared storage device. Performing dedupli-
cation in on-line infrastructures raises performance concerns
that are not addressed in backup systems, namely, the I/O
requests from VMs and server resources cannot be affected
significantly when deduplication is being performed. Post-
processing approaches for deduplication must be used to
comply with these requirements; however such approaches
allow for additional concurrency and thus increase the

complexity of the solution. Moreover, existing decentralized
deduplication proposals [2], [3] do not give any guarantee
about the correctness of their algorithms, which we assume
desirable in complex solutions like these ones.

The rest of this paper is as follows. Section II presents a
brief description of the deduplication algorithm. Section III
describes how the TLA+ toolset [4], [5] was used to find
errors in the algorithm, and how these were then corrected.

II. DEDUPLICATION ALGORITHM

The deduplication algorithm can be divided into three
main modules: I/O interception module, share module and
garbage collector (GC) module. The I/O interception module
intercepts VMs I/O requests (read/write block requests to
virtual addresses) and maps them to the appropriate location
at the storage (physical addresses). Mappings between vir-
tual and physical addresses are kept in a metadata structure
(translation table) that presents the basic mechanism to share
identical physical blocks. Sharing is achieved by pointing
two distinct virtual addresses to the same physical address
and requires a copy-on-write mechanism that prevents updat-
ing physical blocks shared by more than one virtual address.
Copy-on-write requires unused (free) blocks to write the
content of the new blocks, which is achieved with additional
metadata structures that track unused blocks at the storage.

The actual sharing is done by the share module in a
post-processing asynchronous fashion. Periodically, virtual
and physical addresses of written blocks, registered by the
I/O interception module, are collected and shared. These
blocks are marked as copy-on-write and their signatures are
calculated with a Hash function after reading their content
from the storage. Signatures are sent to a distributed hash
table (DHT) used to track the unique block signatures found
at the storage and the number of virtual addresses sharing
those blocks. The DHT allows finding identical data in a
single image of a VM and across several VMs images.

There are two possible responses from the DHT: the
signature matches one of the existing entries or the entry
with that signature does not exist. For the first outcome, the
translation table is updated by pointing the virtual address to
the physical address referred in the DHT’s entry, the physical
block being shared is freed and the counter for that DHT’s
entry is incremented. For the second response, a DHT’s entry
is created with the signature and address of the physical



block and the counter is set to one. Locally, no actions are
taken because there are no candidates to share the block.

Copy-on-write can be viewed as an operation that removes
the link between a virtual address and a shared physical ad-
dress that may be freed if no other virtual address is sharing
it. All these operations are registered by the I/O interception
module and are collected periodically and asynchronously
with the GC module. This module calculates the signatures
of the physical blocks with an approach identical to the one
followed by the share module and sends these signatures
to the DHT. The DHT decrements the entry’s counter and
returns it along with the physical address pointed by that
entry. If the counter reaches the value zero, the physical
address can be freed, otherwise, the block is still linked to
other virtual addresses and cannot be freed. For this remote
call the signature must always exist at the DHT because a
request sent by the GC to the DHT is always preceeded by
a correspondent request done by the share module.

Along this description, we referred for both share and GC
modules that physical blocks can be freed. Free blocks are
kept in a queue, independent for each server, that is used
to provide blocks for copy-on-write operations. Since the
purpose of this algorithm is to share data and free unused
blocks, only a few number of necessary blocks are kept in
these queues for copy-on-write, the remaining blocks are
sent to a remote server that tracks all the unused blocks
found at the shared storage. This server resembles the extend
server of Parallax [6] solution and is used by the servers to
obtain and free unused blocks.

III. MODEL CHECKING

In order to model check the proposed algorithm, it was
encoded using the CAL language. Two safety properties
were then specified using the TLA+ language: (i) That values
read from a storage block correspond to values actually
written there, thus excluding corruption; and (ii) that blocks
marked as having different values in the DHT don’t ever
point to the same physical page. The configuration used had
2 virtual storage blocks, 3 physical disk blocks, 2 processes,
and 2 block values. The problem uncovered is as follows.

Consider that the share module runs for one VM, marks
a specific physical address A, which was not marked pre-
viously, as copy-on-write and starts calculating the Hash
signature for that address. Concurrently, the I/O interceptor,
of the same VM, receives a write request for the virtual
address that is pointing to physical address A and, since the
address was already marked as copy on write, it is written a
copy of that address and the physical address A is ready to
be collected by the GC module. In fact, if the GC module
processes the address A and sends the remote request to the
DHT before the share module, which is processing the same
address concurrently, the counter for that signature will be
decremented before the corresponding increment. This can
lead to two serious problems: If the entry was not present at

the DHT then no address will be decremented but eventually
the share module will make its remote request and produce
a dangling address that will never be freed by the GC. On
the other hand, if the address is present at the DHT and
after decrementing it the counter reaches zero, the address
is freed which may lead to data corruption because some
other virtual address was pointing to that physical address.

We can solve this problem by forcing the share and GC
modules to be synchronized and running sequentially for the
same VM, since this problem does not occur for the share
and GC modules of different VMs. Such solution does not
introduce any negative impact in performance, since no fine
grained locking is required.

IV. CONCLUSION AND FUTURE WORK

This paper presents a highly concurrent deduplication
algorithm for a virtualized distributed scenario with a shared
storage. Complexity is mainly introduced by the post-
processing approach that is necessary to achieve interactive
performance requirements. Model checking with the TLA+,
even with limited scope, was found to be extremely useful
in finding concurrency issues. Currently, we have a newer
version of the algorithm that tolerates crash failures and
has several optimizations to improve the fairness between
the operations of share and I/O modules. As future work,
we intend to specify and extend this work to the complete
version of the algorithm.

ACKNOWLEDGMENTS

This work is partially supported by FCT project
PDTC/EIA-EIA/109044/2008.

REFERENCES

[1] S. Quinlan and S. Dorward, “Venti: A new approach to archival
storage,” in FAST ’02: Proceedings of the Conference on File
and Storage Technologies, 2002.

[2] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li, “De-
centralized deduplication in san cluster file systems,” in Pro-
ceedings of the 2009 conference on USENIX Annual technical
conference, 2009.

[3] J. Paulo, “Efficient storage of data in cloud computing.”
Master’s thesis, 2009.

[4] L. Lamport, Specifying Systems, The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley,
2002.

[5] L. Lamport et al. (2009) Tla+ toolset. [Online]. Available:
http://www.tlaplus.net/tools/tla-toolbox/

[6] D. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M. Fee-
ley, N. Hutchinson, and A. Warfield, “Parallax: Virtual disks
for virtual machines,” in Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems
2008, 2008.


